แบบฟอร์มแจ้งความประสงค์การใช้งบประมาณสำหรับการพัฒนาบุคลากรคณะวิทยาศาสตร์ ประจำปังบประมาณ พ.ศ.2560

ข้าพเจ้านา	ามุคยา รูเมาูยา เ	,}	ตำแหน่ง อาจาร	5	สังกัด หล่าสุดภาคดในใย ส่
ได้ขออนถเวตเข้	าร่วม MO (ผมอาก	5 ENRIC 20	OPPA : C38 d1	พวงาน วิจัย	(
ตาม หนังสือขอ	อนุญาต ศธ.0523.4 ≜	3 / 158	ลงวันที่ 🤊 🤊	4-A 2569 TA	ยข้าพเจ้ามีความประสงค์จะขอ
ใช้งบประมาณทั้	ัฒนาบุคลากรของคณะวิท	ยาศาสตร์ ใน			
	กรณีที่ 1	ไม่มีเอกสารใด ๆ	เสนอคณะฯ (คนละไม่	กิน 6,000 บาท)	
	กรณีที่ 2	มีเอกสารรายงาง	เสรุปเนื้อหาฯ (คนละไม่	เกิน 8,000 บาท) โดย	ยจัดส่งเอกสาร
		รายงานสรุปเนื้อห	าและการนำไปใช้ประโย	ชน์ อย่างน้อย 1 หน้าก	ระดาษ A4
	กรณีที่ 3	เข้าร่วมนำเสนอผ	ลงานวิชาการฯ		
		- คนละไม่เกิน	15,000 บาท (สำหรั	ับสายวิชาการ)	
		- คนละไม่เกิน	10,000 บาท (สำหรับ	บสายสนับสนุนวิชากา	ਰ)
	โดยจะ <u>จัดส่</u>	งหนังสือตอบรับก	ารเข้าร่วมนำเสนอผล	งานฯ และเอกสารดิ	ังต่อไปนี้
	1. บทคัดย่	อ หรือสำเนาโปสเด	อร์(ย่อขนาด A4) หรือเ	บทความฯ ฉบับเต็ม	
	2. รายงาน	สรุปเนื้อหาและการเ	เำไปใช้ประโยชน์ อย่างเ	เ์อย 1 หน้ากระดาษ A4	
	3. เอกสาร	อื่น ๆ (โปรดระบุ)			**************************************
	กรณีที่ 4	เข้าอบรมเชิงปฏิบั	ัติการฯ		
	to have another apply the	- คนละไม่เกิน	15,000 บาท (สำหรั	ับสายวิชาการ)	
		- คนละไม่เกิน	10,000 บาท (สำหรับ	มสายสนับสนุนวิชากา	5)
	โดยจะ จัดส่ ง	เหนังสือตอบรับก	ารเข้าร่วมอบรมเชิงป	ฏิบัติการฯ และเอก	สารดังต่อไปนี้
	1. สำเนาใน	บรับรอง หรือหนังสื	อรับรอง หรือใบประกา	ศนียบัตร หรือวุฒิบัต	ร จากการเข้าอบรมฯ
	2. รายงานส	สรุปเนื้อหาและการเ	เำไปใช้ประโยชน์ อย่างน้	เอย 1 หน้ากระดาษ A4	
	3. เอกสาร	อื่น ๆ (โปรดระบุ)			
ในปีงบประมาณ	พ.ศ.2559 (1 ต.ค.59 –30 ก.	.ย.60) ข้าพเจ้าได้ใ	ช้งบพัฒนาบุคลากรฯ ไ	ปแล้ว จำนวนทั้งสิ้น	ี ครั้ง ดังต่อไปนี้
-ครั้งที่	เลือกใช้กรณีที่	ใช้งบุประมาณ	ไปแล้วเป็นจำนวนเงินทั้	ั้งสิ้น	บาท
-ครั้งที่	เลือกใช้กรณีที่	ใช้งบประมาณ	ใปแล้วเป็นจำนวนเงินทั้	ั้งสิ้น	บาท
-ครั้งที่	เลือกใช้กรณีที่	ใช้งบประมาณ	ใปแล้วเป็นจำนวนเงินทั้	ั้งสิ้น	บาท
	(ν	ากมีจำนวนครั้งเกินกา	่านี้ ให้ทำรายละเอียดแนบเ	ก้ายเพิ่มเติม)	
		-		ผู้ขออนุญาต	
		(alogum	3 cosins)		
		4 / 57.5	2559		*
		(Hoybut	wasing,	ประธานหลักสูต	ร/เลขานุการคณะ/หัวหน้างาน
		4,000	1 / 2559		8 9

หมายเหตุ : 1. งบประมาณที่ใช้สำหรับการพัฒนาบุคลากร หมายรวมถึงค่าใช้จ่ายทุกประเภทที่ใช้ในการเข้าร่วมการอบรม/สัมมนา/ประชุม เช่น ค่าลงทะเบียน ค่าใช้จ่ายในการเดินทาง และอื่น ๆ ที่เกี่ยวข้อง

การใช้งบประมาณพัฒนาบุคลากรในที่คณะวิทยาศาสตร์จัดสรร ให้ถือปฏิบัติตามเงื่อนไขที่ได้กำหนดไว้ในแต่ละกรณี
 (ฉบับปรับปรุงใหม่ตามมติที่ประชุมคณะกรรมการประจำคณะฯ ครั้งที่ 5/2556 เมื่อวันที่ 10 พฤษภาคม 2556)

รายงานสรุปเนื้อหาและการนำไปใช้ประโยชน์จากการเข้าอบรม สัมมนาหรือประชุมวิชาการ

ข้าพเจ้า นางมุจลินทร์ ผลจันทร์ ได้เข้าร่วมการประชุมและนำเสนองานวิจัยแบบposterและมี full paper เรื่อง Effect of light intensities and atmospheric gas conditions on biohydrogen production of microalgae harvested from fisheries wastewater ในการประชุมวิชาการระดับนานาชาติ The 2nd Environmental and natural resources international conference (ENRIC 2016) Theme: Interdisciplinary approached to save future earth environment ซึ่งจัดโดย Faculty of Environment and resources studies, Mahidol University ในวันที่ 16-17 พฤศจิกายน 2559 ณ จังหวัดพระนครศรีอยุธยา ตามหนังสือขออนุญาตเดินทางไปราชการเลขที่ ศธ 0523.4.4.3/158 ลงวันที่ 5 ตุลาคม 2559 นั้น ข้าพเจ้าของรายงานการเข้าประชุมวิชาการดังนี้

- 1. ได้นำเสนองานวิจัยในหัวข้อ Effect of light intensities and atmospheric gas conditions on biohydrogen production of microalgae harvested from fisheries wastewater
- 2. ได้รางวัล The outstanding poster presentation การนำไปใช้ประโยชน์
 - 1. จากรางวัลที่ได้สามารถนำมาเพิ่มตัวชี้วัดให้หลักสูตรและคณะ
 - 2. ได้มีการแลกเปลี่ยนข้อมูลและประสบการณ์ในวิจัยกับคณาจารย์และนักวิจัยจากมหาวิทยาลัยในประเทศและต่างประเทศ
 - 3. ได้ความรู้ที่ทันสมัยสำหรับการเรียนการสอนในหลักสูตร

ผู้ทำรายงาน

(อ.ดร.มุจลินทร์ ผลจันทร์)
หลักสูตรเทคโนโลยีสิ่งแวดล้อม
22 / พฤศจิกายน /2559

ความคิดเห็นของผู้บังคับบัญชาขั้นต้น (ประธานหลักสูตร)
รับทราบ

(อ.ดร.มุจลินทร์ ผลจันทร์) ประธานหลักสูตรเทคโนโลยีสิ่งแวดล้อม 22 / พฤศจิกายน /2559

าวามคิดเห็นของคณบดีคถ	เะวัทยาศาสตร์หรือ	อผู้แทน	
			(รองศาสตราจารย์ ศิรินทร์ญา ภักดี)

Mahidol University

aculty of Environment and Resource Studies

Wisdom of the Land

The 2nd Environment and Natural Resources International Conference (ENRIC 2016)

Interdisciplinary Approaches to Save Future Earth Environment

16 – 17 November, 2016

Phra Nakhon Si Ayutthaya Province, Thailand

Interdisciplinary
Approaches to
Save Future
Earth
Environment

Effect of Light Intensities and Atmospheric Gas Conditions on Biohydrogen Production of Microalgae Harvested from Fisheries Wastewater

J. Kaewseesuk^a, U. Sompong^b, S. klayraung^a and M.K. Pholchan^{a,*}

^aProgram in Environmental Technology, Faculty of Science, Maejo University, ChiangMai 50290, Thailand. ^bFaculty of Fishereies Technology and Aquatic Resources, Maejo University, ChiangMai 50290, Thailand.

Abstract

Recently, fishery farming business has been rapidly developed due to an increasing demand of consumptions and wild fish resources depletion. This process usually generated large amount of wastewater containing high nutrients posing a threat to downstream waters. However, phytoplankton removal techniques that commonly used appear to have low efficiency, time consuming and less sustainable. Microalgae are photosynthetic microorganisms that convert solar energy into hydrogen. Using the harvested algae from fish farms as the source of renewable energy production could be a promising choice for completely handling this fishery wastewater. However, the hydrogen production processes from algae still need more studies as its efficiency varying between algae species and growth factors. In this work, the efficiency of hydrogen production from Scenedesmus sp. and Arthrospira sp. harvested from fish farms under three different light intensity conditions and three atmospheric gas conditions was determined. The results showed that the best condition for hydrogen production from both species was done under 24 hrs dark condition with carbon dioxide addition. Under the atmospheric gas combination of 99% Argon and 1% carbon dioxide, *Scenedesmus* sp. could produce hydrogen gas as high as 0.572 µmolH₂ within 12 hrs., while highest hydrogen production (0.348 µmolH₂) obtained from Arthrospira sp. was found under the atmospheric gas mixture of 98% argon and 2% carbon dioxide. Interestingly, Scenedesmus sp. appeared to produce more hydrogen than Arthrospira sp. under the same condition.

1. Introduction

Recently, fish farming business has grown rapidly due to the population growth and increasing of healthy food demands. In the process of raising fish commercially, however, it requires large amounts of fresh water which then causes high amount of wastewater after the harvesting process leading to the rapid growth of phytoplankton. It is due to the microscopic dimensions of microalgae (0.5-30 µm), moreover, phytoplankton removal techniques that commonly used appear to have low efficiency, time consuming and less sustainable [1,2].

Therefore, turning what is considered a problem into raw material for a product with high value added such as bioenergy could be a promising approach for completely handling this fishery wastewater.

photosynthetic Microalgae are microorganisms which naturally convert solar energy into hydrogen via respiration under dark aerobic conditions and via fermentation under anaerobic conditions. Compared with conventional hydrogen production, biological hydrogen production process using fermentative microorganisms [3,4], photosynthetic bacteria or algae involved less energy and considered to be an environmental friendly process [5,6]. Previous reports showed photosynthetic microorganisms that were cyanobateria and green algae was of interest in

hydrogen production from solar energy and water [7-10].

hydrogen However, the production processes from algae still need more in deep studies as its efficiency varying between algae species and growth factors. Light is known as the primary energy source for the algae growth and enable it to carry out the metabolic processes including hydrogen production [11-12]. Different algae species have different light harvesting antenna pigments, light saturation for photosynthesis characteristics and solar energy conversion efficiency [10]. As light intensity increases, chlorophylls and the biomass composition such as lipid, fatty acids and protein contents generally decreases [13], while starch polysaccharide contents increase [14]. Besides, other cultivation factors such as atmospheric composition, carbon source, nutrients, pH temperature also have the effect on biohydrogen production.

This work aims to study the effect of two growth factors that are light intensity and atmospheric gas condition on the hydrogen production by microalgae harvested from fisheries wastewater. Our finding hopefully provides an alternative sustainable choice for fisheries wastewater handling by biohydrogen production.

E-mail address: mujalin@mju.ac.th

^{*}Corresponding Author: Tel.: +6-653-873870-2; fax: +6-653-873-827

2. Methodology

2.1 Strain of microalgae and growth conditions

Dominant species of microalgae from the one of the fish farms in ChiangMai were isolated and identified. Two dominant species, *Scenedesmus accuminatus* (green algae) and *Arthrospira platensis* (cyanobacteria), were selected for studying its H₂ production efficiency. The green algae was cultivated on BG-11 medium at pH 7-8, while the cyanobacteria strain was grown on ZN medium at pH 9-10 under white fluorescence lamps (80 µEm⁻²s⁻¹) at room temperature (Table 1). Cells grown as above were recultivated and harvested with an initial optical density at an OD₇₃₀ and OD₇₅₀ of 0.1 for *Scenedesmus accuminatus* and *Arthrospira platensis*, respectively.

2.2 Photobioreactors and gas collection measurement

To identify the efficiency of both microalgae on H₂ production under different light

intensities and atmospheric gas conditions, both algae strains were inoculated with an initial optical density of 0.01 and grown for 1 week at room temperature under light intensity of 80 µEm⁻²s⁻¹ until the optical density reached the OD730 of 0.672 for Arthrospira platensis and the OD₇₅₀ of 0.755 for Scenedesmus accuminatus. Then, cells were harvested centrifugation at 5000 rpm at 4 °C for 15 min. and 350 ml culture was transferred to 500 ml gas tight photoreactors (Fig 1), which were then tightly capped and flushed with argon gas for 10 min. to eliminate atmospheric oxygen in head space. The reactors were regularly shaked and incubated at room temperature under different treatment conditions shown in Table 2. At every 12 hours interval, gas samples were collected and the concentrations of gas phase were measured with a gas chromatography (Shimadzu 15-A, Kyoto, Japan). Moreover, the algae cell and chlorophyll concentrations before and at the end of experiments were also measured according to [15].

Table 1: Concentrations of nutrients in medium for Scenedesmus accuminatus and Arthrospira platensis cultivation

BG-11 (N	N-free medium)	ZN_0 (ZN ₀ (N-free medium)	
Nutrient	Amount (g/l ⁻¹)	Nutrient	Amount (g/l ⁻¹)	
NaHCO ₃	16.8	H_3BO_3	2.85	
K ₂ HPO ₄	0.50	MnCl ₂ .4H ₂ O	1.81	
NaNO ₃	2.50	ZnSO ₄ .7H ₂ O	0.22	
K ₂ SO ₄	1.00	CuSO ₄ .5H ₂ O	0.08	
NaCl	1.00	MoO_3	0.015	
MgSO ₄ .7H ₂ O	0.20			
CaCl ₂ .2H ₂ O	0.04			
FeSO ₄ .7H ₂ O	0.20			
Na ₂ EDTA ₋₂ H ₂ O	1.60			

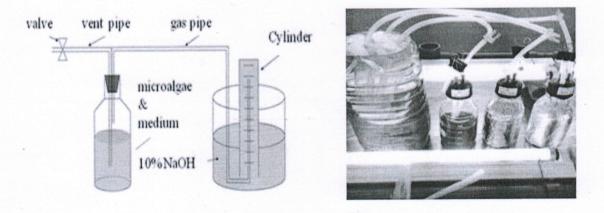
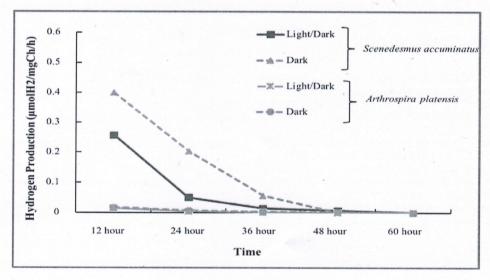


Figure 1: A schematic of the photoreactors for H₂ production from microalgae

16 - 17 November, 2016, Phra Nakhon Si Ayutthaya Province, Thailand

Table 2: Treatment conditions used in this study.

Light intensities	Atmospheric gas condition		
Light condition (80 μEm ⁻² s ⁻¹), 24 hr.	100% Argon 99% Argon + 1% CO ₂ 98% Argon + 2% CO ₂		
Light condition (80 μEm ⁻² s ⁻¹), 12 hr. Dark condition, 12 hr.	100% Argon 99% Argon + 1% CO ₂ 98% Argon + 2% CO ₂		
Dark condition, 24 hr.	100% Argon 99% Argon + 1% CO ₂ 98% Argon + 2% CO ₂		


3. Results and discussion

3.1 Effect of light intensity on H2 production

In this work, the impact of three different light conditions (24 hrs of light (80 μEm⁻²s⁻¹), light (12 hrs) (80 $\mu \text{Em}^{-2} \text{s}^{-1}$) and dark (12 hrs) (0 $\mu \text{Em}^{-2} \text{s}^{-1}$), and 24 hrs of dark (0 µEm⁻²s⁻¹) on hydrogen production from both algae strains were examined. It is no doubt that the solar energy conversion efficiency as well as hydrogen production is obviously affected by the light intensity. Normally, higher light intensity affects the growth of biomass and promotes higher hydrogen production [9]. On the other hand, too much light intensity can also suppress hydrogen production due to high oxygen production [16]. The results found that both Arthrospira platensis and Scenedesmus accuminatus greater hydrogen production under 24 hrs of dark condition which was observed from the first 12 hrs with the value of 0.348 µmolH₂/mgCh/h/h and 0.572 umolH₂/mgCh/h/h, respectively (Fig 2a). This is in agreement with a previous study by [17] demonstrating that the faster and maximum value of hydrogen production was achieved in the darkness condition. Under 24 hrs light condition, however,

there was almost no detectable hydrogen production from both species (data not shown). This probably indicated the result of oxygen produced via photosynthesis that inhibited the hydrogenase and nitrogenase activities [10,18].

During the diurnal cycle of 12 hrs light/dark condition, however, the result shows that both algae could still produce hydrogen up to 0.298 μmolH₂/mgCh/h/h and 0.047 μmolH₂/mgCh/h/h under the atmospheric gas condition consisted of 98 % argon and 2 % CO₂ for Scenedesmus accuminatus and Arthrospira platensis, respectively (Fig 2b). This diurnal light-dark cycle has been reported to help an increase in yield of hydrogen production due to the better stability of nitrogenase activity which created greater hydrogen production capacity [16,18]. Under dark condition, moreover, the results (Fig 2 (a,b)) shows high hydrogen observed in the treatments where the addition of carbon source (CO₂) applied to the atmospheric gas, especially the green algae (Scenedesmus accuminatus). This may be due to the ability of green algae that could produce hydrogen by carbon fixation from external carbon source under dark condition [19].

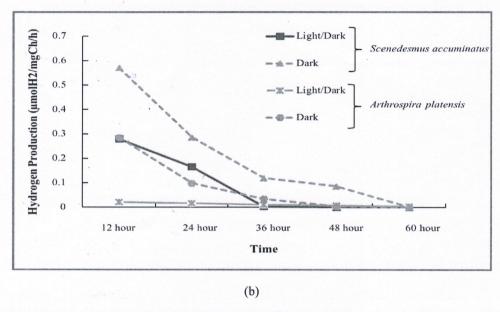
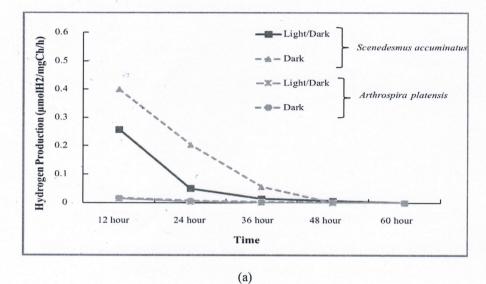


Figure 2: Effect of light intensity on hydrogen production of *Arthrospira platensis* and *Scenedesmus accuminatus* (a) under 24 hrs dark condition and (b) under 12 hrs light/12 hrs dark condition.

3.2 Effect of atmospheric gas conditions on H_2 production


Three atmospheric gas conditions used in the study consisted of 1) 100% argon; 2) 99% argon and 1% carbon dioxide; and 3) 98% argon and 2% carbon dioxide. The results show that greater hydrogen production by both algae strains achieved in the treatments where CO_2 added into the atmospheric gas condition (Fig 3(a) to (c)). This indicates that carbon source affects the efficiency of hydrogen production. [20] suggested that carbon source affected nitrogenese and hydrogenase activity in the hydrogen production process. Moreover, it was shown that Arthrospira platensis achieved highest hydrogen production (0.348 μmolH₂/mgCh/h/h) in the gas mixture of 98% argon and 2% CO₂ (Fig 2(c)), while Scenedesmus accuminatus tend to produce greater hydrogen (0.572 μmolH₂/mgCh/h/h) in the atmospheric gas mixture of 99% argon and 1% CO₂ (Fig 2(b)). It is due to the microalgae are photoautotrophic organisms and carbon source (both inorganic and organic forms) is one of an indispensable nutrients for their cultivation [21]. The carbon source apparently affects their carbon metabolisms (photoautotrophy, heterotrophy, photoheterotrophy and mixotrphy), the biomass productivity as well as biomass composition [12]. As

increasing of CO_2 is related to photosynthesis, it has been reported that cyanobacteria has ability to grow and use CO_2 at higher rate [22], which means that hydrogen production become higher where photosynthetic activity is higher. However, it is noted that biomass productivity could be enhanced by the addition of CO_2 but each alga species respond to different CO_2 concentration [23-25].

3.3 Effect of Species on H₂ production

To compare the efficiency of hydrogen production between both alga species, the results show that Scenedesmus accuminatus had more ability to produce higher hydrogen than Arthrospira platensis in every condition. At low light intensity condition, some report that Scenedesmus accuminatus has The green alga is capable of both uptake and produce hydrogen after anaerobic adaptation (photoreduction CO_2 of photohydrogen production [3, 24], while Arthrospira photosynthetic platensis is an oxygenic bacteria which can only produce hydrogen by reversible hydrogenase through photosynthesis. Moreover, Arthrospira platensis is more sensitive to the sudden change of pH due to the formation of hydrogen carbonate (data not shown).

16 - 17 November, 2016, Phra Nakhon Si Ayutthaya Province, Thailand

0.7 Hydrogen Production (umolH2/mgCh/h) Light/Dark Scenedesmus accuminatus 0.6 0.5 **≭**— Light/Darl Arthrospira platensis 0.4 - Dark 0.3 0.2 0.1 0 12 hour 24 hour 36 hour 48 hour 60 hour Time

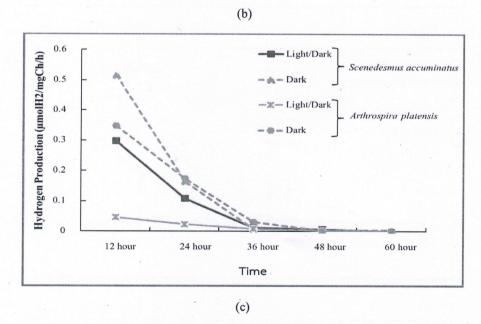


Figure 3: Effect of atmospheric gas conditions on H_2 production (a) 100% argon (b) 99% argon + 1% CO_2 (c) 98% argon + 2% CO_2

4. Conclusion

intensity and atmospheric condition had the effect on hydrogen production from microalgae. Both species could not produce any hydrogen under 24 hrs of light. The best condition for hydrogen production from Scenedesmus accuminatus was in the atmospheric gas combined condition of 99% argon and 1% carbon dioxide under 24 hrs dark conditions, while Arthrospira platensis achieved the great hydrogen production under the atmospheric gas condition of 98% argon and 2% carbon dioxide in darkness. In comparison, however, it was found that Scenedesmus accuminatus could produce more hydrogen gas than Arthrospira platensis under the same condition.

5. Acknowledgement

This work was financial supported by National Research Council of Thailand.

6. References

[1] N. Uduman, Q. Ying, M. K. Danquah, G. M. and A. Hoadley, "Dewatering microalgae cultures: A major bottleneck to algae-based fuel". Renewable and Sustainable Energy, 2, 1-15. 2009.

[2] C.G. Alfafara, K. Nakano, N. Nomura, Igarashi, and M. Matsumura, "Operating and scale-up factors for the electrolytic removal of algae from eutrophied lakewater." Journal of Chemical Technology and Biotechnology, 77, 871-876, 2002.

[3] S. Kosourov, V. Makarova, A.S. Fedorov, A. Tsygankov, M. Seibert, M. and M.L. Ghirardi, " The effect of sulfur re-addition on H_2 photoproduction by sulfur-deprived green algae." Photosynth res, 85(3), 295-305, 2005.

[4] C.C. Wang, C.W. Chang, C.P. Chu, D.J. Lee, B.V. Chang and C.S. Liao, "Producing hydrogen from wastewater sludge by Clostridium bifermentans." J. of Biotechnology 102, 83-92.

[5] D. Das, T.N. Veziroglu, "Hydrogen production by biological processes a survey of literature." IntJ.Hydrogen Energy 26, 13-28, 2001.

[6] D.B. Levin, L. Pitt, M. Love, "Biohydrogen production prospects and limitations to practical application." Int.J.Hydrogen energy 29 (173-185), 2004.

- [7] C.N. Dasgupta, J. Gilbert, P. Lindblad, T. Heidorn, S.A. Borgvang, K. Skjanes, "Recent trends on the development pf photobiological processes for the improvement of hydrogen production." Int J Hydrogen energy 35 10218-38, 2010.
- [8] P. Tamahnini, E. Leitao, P. Oliveira, D. Ferreira, F. Pinto, Harris "Cyanobateria D.J. hydrogenase: diversity, regulation and applications". FEMS microbiol Rev. 31 692-720. 2007.
- [9] C. Maneeruttanarungroj, P. Lindblad, Incharoensakdi, "A newly isolated green alga, Tetraspora sp. CU2551, from Thailand with efficient hydrogen production." Int J Hydrogen energy. 35 13193-13199. 2010.

[10] E. Eroglu, A. Melis, "Photobiological hydrogen production: recent advances and state of the art". Bioresource technology, 102, 8403-8413, 2011.

[11] Z. Dubinsky, R.Matsukawa, and I. Karube, "Photobiological aspects of algal mass culture." J. Mar. Biotechnol . 2, 61-65. 1995.

[12] G. Markou, D. Georgakakis, "Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewater: A

review." Applied Energy. 88 3389-3401. 2011.
[13] M. Tedesco, E. Duerr, "Light temperature and nitrogen starvation effects on the total lipid and fatty acid content and composition of Spirulina platentic UTEX." J. Appl Phycol 1 201-9,1928.

[14] O. Friedman, Z. Dubinsky, and S. Arad (Malis), "Effect of light intensity on growth and polysaccharide production in red and blue-green Rhodophyta unicells." Bioresource Technol. 38, 105-110, 1991.

"Absorption of light by [15] G. Mackinney, Chlorophyll solutions". J. Biol. Chem, 140, 315-

322., 1941.

[16] A. Meli, L. Zhang M. Forestier, M.L. Ghirardi, M. Seibert. "Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green reinhardtii,". Plant Chlamydomonas Physiol. 122. 127-133, 2000.

[17] A. Papazi, A.I. Gjindali, E. Kastanaki, K. Assimakopoulos, K. Stamatakis, K. Kotzabasis, "Potassium deficiency, a smart cellular switch for sustained high yield hydrogen production by the green alga Scenedesmus obliquus." Int. J. Hydrogen energy. 39. 19452-19464, 2014.

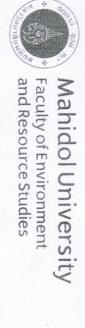
[18] E. Eroglu, U. Gunduz, M. Yucel, I. Eroglu, growth "Photosynthetic bacterial productivity under continuous illumination or diurnal cycles with olive mill wastewater as feedstock." Int.J.Hydrogen Energy 35 (11) 5293-5300, 2010.

[19] F. Chen, and M.R. Johns, "Heterotrophic growth of Chlamydomonas reinhardtii on acetate in chemostat culture." Process Biochem. 31, 601-604, 1996.

[20] D. Dutta, D. De, S. Chaudhuri, and S.K. Bhattacharya, "Hydrogen production cyanobacteria" Microb. Cell. Fact, 4, production 2005.

- [21] A. Vonshak, "Recent advances in microalgal biotechnology." Biotechnol Adv. 8. 709-727,
- [22] M.G. De Morais, J.A.V. Costa, "Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a threestage serial tubular photoreactor." J Biotechnol 129. 439-445, 2007. [23] S.-H. Ho, C.-Y. Chen, D.-J. Lee and J.-S.

Chang. "Research review paper: perspectives on microalgle CO2 mitigation and biodiesel production." Bioresource Technology, 8725-8730, 2011.


[24] L. Florin, A. Tsokoglou, and T. Happe, "A novel type of iron hydrogenase in the green alga Scenedesmus obliquus is linked to the photosynthetic electron transport chain." J.Biol.Chem, 276, 6125-6132, 2001.

The 2nd Environment and Natural Resources International Conference (ENRIC 2016)

16 - 17 November, 2016, Phra Nakhon Si Ayutthaya Province, Thailand

[25] E. Suali, R. Sarbatly, "Conversion of microalgae to biofuel Renew." Sustain. Energy

Rev, 16 (2012), 4316-4342, 2012.

Environment and Natural Resources International Conference (ENRIC)

Certificate of Presentation

This is to Certify that

Dr. Mujalin Pholchan

Effect of Light Intensities and Atmospheric Gas Conditions on Biohydrogen Production of Microalgae Harvested from Fisheries Wastewater has presented the poster entitled

at

The 2nd Environment and Natural Resources International Conference on 16th – 17th of November 2016, The Krungsri River Hotel, Phra Nakhon Si Ayutthaya, Thailand

I um R

Associate Professor Dr.Sura Pattanakiat, Ph.D. Chair of the Conference, ENRIC 2016

Environment and Natural Resources International Conference (ENRIC)

This is to Certify that

Dr. Mujalin Pholchan

has awarded the outstanding poster presentation

Effect of Light Intensities and Atmospheric Gas Conditions on Biohydrogen Production of Microalgae Harvested from Fisheries Wastewater for the paper entitled

The 2nd Environment and Natural Resources International Conference on $16^{th} - 17^{th}$ of November 2016, The Krungsri River Hotel, Phra Nakhon Si Ayutthaya, Thailand

Associate Professor Dr.Sura Pattanakiat, Ph.D. Chair of the Conference, ENRIC 2016

บันทึกข้อความ

ส่วนร้ำชั้การ หลักสูตรวิทยาศาสตรมหาบัณฑิต สาขาวิชาเทคโนโลยีสิ่งแวดล้อม คณะวิทยาศาสตร์ โทร.๓๘๗๐-๒ ที่ ศธ ๐๕๒๓.๔.๔.๓/๑ ๙๘ วันที่ ๕ ตุลาคม ๒๕๕๘ เรื่อง ขออนุญาตเข้าร่วมการประชุมวิชาการนานาชาติ และเสนอผลงานวิจัย

เรียน คณบดีคณะวิทยาศาสตร์

ตามที่คณะสิ่งแวดล้อมและทรัพยากรศาสตร์ มหาวิทยาลัยมหิดล กำหนดจัดการประชุมวิชาการ นานาชาติ The ๒ Environment and Natural Resources International Conference (ENRIC ๒๐๑๖): Interdisciplinary Approaches to Save Future Earth Environment โดยมีวัตถุประสงค์เพื่อแลกเปลี่ยน ประสบการณ์การบริหารจัดการและการวิจัยด้านสิ่งแวดล้อมระหว่างนักวิชาการ ผู้แทนหน่วยงานภาครัฐและเอกชน และองค์กรด้านสิ่งแวดล้อมต่างๆ ตลอดจนส่งเสริมความร่วมมือด้านการวิจัยระดับภูมิภาคเอเชียตะวันออกเฉียงใต้ และตระหนักต่อปัญหาสิ่งแวดล้อมและทรัพยากรธรรมชาติในระดับสาธารณะ ระหว่างวันที่ ๑๖ – ๑๗ พฤศจิกายน ๒๕๕๙ ณ โรงแรมกรุงศรีริเวอร์ จังหวัดพระนครศรีอยุธยา นั้น

ในการนี้ ข้าพเจ้าอาจารย์ ดร.มุจลินทร์ ผลจันทร์ จึงขออนุญาตเข้าร่วมการประชุมวิชาการ นานาชาติดังกล่าว และเสนอผลงานวิจัยในรูปแบบโปสเตอร์ เรื่อง "Effect of light intensities and atmospheric gas conditions on biohydrogen production of microalgae harvested from fisheries wastewater" ตามวัน และสถานที่ดังกล่าว

จึงเรียนมาเพื่อโปรดพิจารณาอนุญาต

(อาจารย์ ดร.มุจลินทร์ ผลจันทร์) ประธานอาจารย์ประจำหลักสูตรวิทยาศาสตรมหาบัณฑิต

สาขาวิชาเทคโนโลยีสิ่งแวดล้อม