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The sct of lincar terms, e, terms in which each variable occurs at most once, docs not
form a subsemigroup of the so-called diagonal semigroup. We consider the reduct of the
diagonal semigroup to the linear terms, which is not a partial semigroup. We extend
the set of lincar terms by an expression
semigroup. The algebraic structure of this semigroup will be studied in this paper. We
characterize the Green’s relations and the regular elements as well as the idempotent

«

", that is formally a lincar tcrm, obtaining a
cleruents. Moreover, we discuss the ideal structurc.

Keywords: Linear terms; diagonal semigroup; Green’s relations; regular elements; ideals.
Yy 8 8

AMS Subject, Classification: 08A30, 08A55

1. Introduction

In algebra, an important problem is the study of the algebraic structure of a given
universal algebra. A classical class of universal algebras is the variety of semigroups
[1]. Semigroups are important structures in Algebra and also in other fields of
mathematics (e.g. in theoretical computer sciences: the word semigroup). In fact. a
semigroup is a pair consisting of a nonempty set (the universe) and an associative
operation on this set. The structure of a semigroup can be characterized by Green's
relations very well [7]. Morcover, the regular and the idempotent elements of a
semigroup as well as its ideal structure are of particular interest.

*Corresponding author.
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In the present paper. we study a seniigroup. whose universe is a particular
subset of the set of all terms of a given type over a countable infinite alphabet.
A semigroup of terms of a given type, the so-called diagonal semigroup, was first
studied by Denecke and Jawpachon in 2006 [4]. Concerning terin functions, the
concept of so-called linear terms appears (e.g. [2]). Recall that a term over a given
alphabet, containing each variable at most once, is called linear. Note that there
are also other nanies for such terms. For the algebraic background of linear terms,
we refer the reader to the paper [3] by K. Denecke.

In [8], the authors define a partial binary operation on the set of linear terms of
tvpe 7 = (n,...,n), for a given natural number n, and study the regular elements
as well as the Green'‘s relations. It will turn out that this partial operation is not
associative. So, one has to question the results in [8]. In the present paper, we want
to correct this situation, by introducing a semigroup whiclh extends the partial oper-
ation. Since the partial operation is not associative. the one-point extension is not
practicable. We will consider another extension. For this, we introduce an expres-
sion o0’ which is characterized in that it contains no variables and no operation
symbol. In particular, co can be regarded as linear since it has no variable and so
it satisfies the definition of linear term formally.

In the next section, we summarize preliminary definitions, notations, and facts.
In particular, we introduce an extension of the partial operation given in [8] and
show that it is associative. In fact, we introduce a semigroup of linear terms. In
the rest of the paper, we study the algebraic structure of this semigroup. The third
section is devoted to the idempotent and the regular elements as well as the ideal
structure. In the last section, we characterize all the Green‘s relations.

2. Preliminaries

Let X := {z1,22,...} be a countable infinite set, which is called alphabet and its
elements are called variables. We fix a set {f; : ¢ € I} of operation symbols for
an index set . To every operation symbol f;(i € I), we assign a natural number
n; > 1, which is called the arity of f;. The sequence 7 = (n;);¢; will be called type.
Let n > 1 be a natural number and let W, (X,,) be the smallest set containing the
variables x,...,z, and being closed under the following operation: if i € I and
Bl tn, € Wo(X,) then fi(t,. .. t,,) € Wo(X,). The elements in W.{X,,) are
called n-ary terms of type 7. Note that every n-ary terin is also k-ary, whenever
k > n. Denote by W,(X) the set of all terms of type 7 over X, i.e. W, (X) :=
UnesWr(X5), where N denotes the set of natural numbers. Throughout this paper,
we will use the following notations for a term # of type 7:

ct) is the set of all variables occurring in ¢;
¢,(t) is the number of occurrence of the variable x; in t, for 1 € N;
op(t) is the number of operation symbols occurring in ¢,
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Now. we will fix a natural number n. For any natural number m, the superposition
S), of an m-ary term with n m-ary terms ty,...,t, is defined as following:

I

Sty ty, .o ty) =1t for 1 <4< mnand
SZL(fZ‘(£J>‘"a’Sn,)atls"')tn) = .f’i(S-gl,(Sl7tla"‘7t77,)7"'151:)LL<$77.1)t1ﬂ'")i-ﬂ,)) fOI
i€ Iand s;,... s, € W (X,) [6]. The operation S7 has a very nice formal
interpretation. In fact, ST (s, ¢,...,t) is nothing else than the term s but all the

occurrences of the variables w),..., 2, are replaced by the term ¢, for any (lin-
ear) terms s,t € W.(X). Denecke and Leeratanavalee introduced a generalized
superposition of a k-ary term with n m-ary terms ty,...,t, for any k € N [5],
i.c. they defined S (¢t t1,. .. t,) for the case that t ¢ W, (X,,). In fact, they put
Shxi,ty, ... ty) = ax,, whenever ¢ > n. By the inductive steps, S2 (¢, t1,... . t,)
is defined for any term t. Subsequently, the natural number m in the expression
SPh(t,ty, ..., ty) will be any suitable natural number such that #;,. .., ¢, € W, (X,.).
It was shown that S}
In [4], Denecke and Jampachon define a binary associative operation 4, on the
set of terms of type 7 by s+, ¢ = SI(s,t,...,t), whenever t € W,.(X,,) and
s € W.(X). Note that the operation +, depends on the natural number 7, which

in this general setting satisfies the superassociative law [6].

was not indicated by the authors.

Recall that a linear term of type 7 is a term ¢ with ¢;(¢) < 1 for all © € N.
In [8], the authors define a partial binary operation 4+, on the set of linear
terms by ‘

Sit(s,t,... t) ifSE (st 1) is linear

S+t =

not defined otherwise.
We observe that -+, is not associative. For this, let 7, s, € W, (X) be linear terms
with e(r) NV X, =0, cngi(s) = cupr(b) =1, and ¢(s) N X, = {21}, Then s+, ¢ is
not defined since ¢,41(s 4+, t) = 2, i.e. r +, (5 +, t) is not defined. On the other
hand. (r +, 8) +, t is defined since we can easy calculate that r +, s = r and
r+,t=r.

Let H/T““(X)C’o be the set of all linear terins of type 7 extended to the expression
oc. Since oo does not contain any variable, i.e. each variable occurs formally at most
once, one can regard the expression oo as linear. In particular, we can state that
¢(o0) = f. We will extend the partial operation +, to W (X)> obtaining a full
opcration by

Sit(s,t,...,t) if s, tF# o0 and Sk(s,t,... t) is linear
s+t =<s ift =00 and ¢(s)N X, =0
00 otherwise,

for s,t € WIn(X)*°. We have to verify that +,, is associative. First. we observe, by
the definition of the operation +,, each s € W' (X)*® with ¢(s) N X, = 0 is a left
zero. This provides the following lemma.

2050005-3



Asian-European J. Math. Downloaded from www . worldscientific.com
by WSPC on 07/30/18. Re-use and distribution is strictly not permitted, except for Open Access articles.

D. Phusanga & J. Koppilz

Lemma 1. Let s € W' (X)® with var(s) N X, = 0. Then s +,t = s for all
te Win(X)e

The formal interpretation of S7 justifies that s 4+, ¢ is not defined, whenever
more than one variable of X, occurs in s, for all (linear) terms ¢t € W, (.X). This
proves the following lenuna.

Lemma 2. Let s € WHP(X)® such that |c(s) N X,| > 2. Then s+, t = oo for all
t e W/ijn(x)oo

The verbal definition of ST justifies also the following observation.

T

Lemma 3. Let s.t € W.(X) be linear terms and let k € N. If |c(s) N X, | =1 then

c(Sy(s,t,... ) = {;kif)) redt Z,{f z ﬂz
ot fk <n.

Now, we are able to verify that +, is associative.

Proposition 4. (W (X)) 4+,) is a semigroup.

Proof. It is to show that +,, is associative. We will use the previous lemmas
throughout this proof without to refer them. Let 1, s,t € WIT(X)®. We have to
verify that (r+,8)+,t = 7+, (s+ut). He(r)N X, = (it inc ud(‘s r = 00) or |e(r)N
Xn| > 2 then it is easy to verify that (r 4+, s)+,t = r+n (s +,t) € {o0,7}. Suppose
e(r)NXy| = 1. If [e(s)NX,,| > 2 and thus [¢(S], (7, 5. .., )N Xy | > 2, we
obtain (r+,5) +nt =r+n(s+,t) = co0. If e(s)NX,, = 0 (it includes s = 00) and thus
c(r+,5)NX, =0, wehave (r+,8)+,t =r+, (s+,t) =7+, 5. Suppose now that

le(s)NX o(Sh (8.0, 8))N Xy =1 IESH(r, s, ..., 8) is not linear then
there is a natural number k > n with ¢, (S]:(r,s,...,s)) = 2, L.e. xp, € ¢(r)Ne(s)
as well as xp € (S (s,t,...,t)), whenever t ;é oo and ST (s,t,...,t) is linear.

This insures that » +,, (s +, t) = co. On the other hand, we have r +,, s =
(because ¢, (Sp(r,s....,8)) = 2) and thus, (r +, s) +» t = 00. Suppose now that
ST (r,s,...,8)is lincar, i.e. rt,8 = SP(r,s,..., s). If t = oo then (r+,8)+,t =7+,
(84, 1) = 2¢. So. we have to consider the case t 7& oo. If ST (s,t,...,t) is not linear
then there is a natural number [ > n with ¢ (S (s, ) =2 1c.xp € efs)Ne(l).
In particular, x; € ¢(S)% (1, s,...,s)) and thus, q(S” (Sﬁ, (rys,..0,8),t, ..., 1) = 2.

This means that (r +, s) +, t = co. On the other hand, we have r +, (s +, t) =
I 4+, 00 = oc. It remains the case that S (s,f,...,t) is linear. Let j € N. If j > n

then ¢ (SE(r S (s, b, ), .., m(s Lo t))) = e(r) + ¢ (Sh(s,t,. ... t)) =

ey (r )+(/]( )+ () = (S (s, ))"‘%()-%(Sn(sn(' ) ))
If/ < n then ¢; (S5, (r, Sy (5.1, . ) ST (s, L)) = (S”( ...,t)) =
i (1) = ¢ (SE(Sm(r s, . .,8),t, ... )) Thls shows that SEA(SH (7, L S)y by, t)
is linear if and only if ST (7, S;}L( co ) SR (st L)) s llllbdl‘ Hen(g

(r+.s)+nt=r+,(s+,t) =00 or both terms S’,’;(S” (7 S,...,8),t,...,t) and
S(r, St (s, t, .. t), ..., St (s, t,...,t)) are linear and we have the equality (r 4+,

T mn T
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§)Fnt =80 (Sh(r.s, .. 8)t o t) = SE(r, S (st t), . ST (st 1) =
7+, (s -+, t) because of the superassociative law for ST O

3. Idempotent and Regular Elements

In Lemma 1, we have shown that s 4+, ¢t = s for all t € W!"(X)*. whenever
¢(s) N X, = 0. Now, we characterize all pairs (s.£) € (WIP(X)*)? such that
S+npt =s.

Lemma 5. Let s,t € WH(X)®, Then s +,t = s if and only if c(s) N X, = 0
or s te X, ors = f(s1,....8n,) 18 a composed term such that there is j ¢
{1, b with e(sg) N X, =0 for all k€ {1,...,m:30\{j} and c(s;) N X, = {t}.

Proof. Suppose that s+,t = s and additional suppose that ¢(s)NX,, # @ and either
s#Ftors=1¢ X, Froms+,t=sandc(s)N X, # 0. it follows |c(s) N X,,| =1
by Lemma 2. In particular, this implies ¢ # oc. Assume that s € X,, but s # .
Then s+, t = Sl (s,t,...,t) =t # s, a contradiction. Hence, s =t or s ¢ X,,.
This implies s ¢ X, i.e s a composed term s = f;(s1....,8,,) with ¢(s) N X,, # 0.
Then there is j € {1,...,n;} with ¢(sx) N X,, =0 for all k € {1,...,n;}\{j} and
c(s;) N X,| =1 because |e(s) N X,| = 1. Assume that s; ¢ X, or t # s5;. Then
Si(s;,t,...,t) # s; by Lemma 3 and thus, s +,, ¢t = S} (fi (51,0, 8, ), b, 1) =
Fi(SE(s1yty o t), o SP (St ) # filst, .. 8n,) = s, a contradiction.
Hence, 5; € X5, a.nd t=sj, le c(s;)NX, = {t}.

The converse direction can be casy verified by the calculation of s +,, ¢ under
the given conditions. O

Let E, be the set of all idempotents elements in the semigroup (W (X)>; +,),
Le.

li .
Ey, ={se W (X)>®: s+, s=s}
Lemma 5 provides a characterization of F,.

Proposition 6. £, = X, U{s € WInX)>* : ¢(s)N X, = 0} and E, forms a
subsemnigroup of (WIn(X)>: 4,,).

Proof. By Lemma 5, we have s +, s = s if and only if ¢(s) N X,, =0 or s € X,
or s = fi(s1,...,8n,) is a composed term such that there is j € {1,...,n;} with
c(sk) N Xy, =0 forall ke {1,....,n;}\{j} and c(s;) N X, = {s}. Since the latter
case is obviously not possible (it would provide s = fi(s1,...,5,,) € X,), the first
part of the proof is done. It remains to show that £, is closed under +,. But this
is the case by Lemma 1 and because z; +, s = s for 1 <7 < n and s € WIn(X)ee,

W

Now, we determine the regular elements in (WH(X)%; +, ). Recall that an
element s € WIn(X)® ig called regular (in (WIn(X)%: +,)) if there is a ¢t €
Wln(X)> such that s +, ¢ +, s = s. Let Reg,, be the set of all regular elements

2050005-5
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in (WIin(X)>; +,). Clearly, E, C Reg,. In general. the converse inclusion is not
valid. But we will obtain the equality for the semigroup (W!"(X)°; +,,). In order
to verify this, we have to prove the following fact.

Lemma 7. Let s,t € W' X)®. Then s +,t € X if and only if s € X andt € X,
whenever s € X,,.

Proof. Suppose that s +,, t € X. Then, we observe that s € X by Lemma 1
until Lemma 3. Suppose that s € X,,. Then, we conclude t # oo and s 4+, t =
Sp(syt, .ty =t le t€X.
Conversely, we have
se X ifs¢g X,
S 4ot = .
te X ifse X,. a

We will use Leminas 5 and 7 in order to show that the set of the regular elements
coincides with the set of the idempotent elements in (WIN(X)>; +,,).

Proposition 8. E),, = Reg,,.

Proof. We have E, C Reg,. Let now s € Reg,,, l.e. there is 1 € I/T/'TI"”(XPC such
that s +,, (t 4+, s) = s. By Lenuna 5, we have c¢(s)NX,, =0 ors =t+,, s € X,, (i.e.

s€ Ep)ors=f,(s1,...,8,,)1s a composed term such that there isje{l,...,n}
with ¢(s,) N X, =0 for all & € {1....,n;}\{j} and ¢(s;) N = {t +, q} The
latter one is not, possible. Otherwise, t € X'\ X,, by Lemma 7 (sm(,o t+n5 € X and
s¢ X)), ie t+,s=t¢ X,, acontradiction. 0O

[n the last part of this section, we study the ideal structure of the semigroup
(Wln(X)>°; +,). We will show that there are countable infinite many ideals. For
p €N, let

pi={t € WIN(X)™® :op(t) > phU{t € W™(X)™ : c(t) N Xy =0},

Proposition 9. 1, is an ideal of (W)™ (X)>;+,,), for all p € N.

Proof. We have to show that both terms s +, ¢ and t +, s belong to I/I/’T““(X)Oc
for each s € WIn(X)* and each t € I,,.

Ife(t)N X, = 0 then t4,s =t € I,. Further, we have that either s+, = oo € I,
Or $ 4+, t is a lincar term with e(s +, t) N X, =0, i.e. s+t € 1.

Now, we consider the case that |e¢(t) N X,| > 1 and op(t) > p. Then either
§ = 00 or op(S” (t,s,...,8)) > op(t) > p by the verbal definition of S7,. Hence,
cither t +, ¢ = 00 or op(t +, $) > p. On the other hand, we have that either
c(s) N Xn = 0 or op(SE(s,t....,1)) > op(t) > p by the verbal definition of S7,.
Therefore, s +,t = s € {r € VVT““(X)OO ce(r)N X, = 0} (it includes s 4, t = x)
or op(s+,t) > p,le s+pt €l 0

2050005-6
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Proposition 9 shows that there are countable infinite many ideals of
(Wln(X)%0: 4,). Tt is easy to verify that I, = WI"(X)°°\X,,. In fact, we have
t e WIn(X)*=\X,, if and only if t = co or t € X\X,, or op(t) > 1 if and only if
t ¢ I since X\X,, C {r e WIn(X)>®:¢(r)N X, = 0}.

Proposition 10. I, is the greatest proper ideal of (WH (X)), +,).

Proof. Let I # WI"(X)* be an ideal of (WHt(X)%; +,.). Assume that I Z I;.
Then there is ¢ € {1,....n} with z; € I. Because of W (X)*® = {z;, +t : t €
WIm(X)e} C I, we obtain I = W!I"(X)> a contradiction. |

4. The Green’s Relations

In this section, we characterize the Green’s relations R, £, H, D and J for the semi-
group (W!"(X)°; 4, ). Let us recall the definitions of these five equivalence rela-
tions. Since (WH(X)%; 4.} does not form a monoid, we consider the corresponding
monoid (WIH(X)*)! + ) with the identity element 1. Let s,t € WI"(X)°. Then

sRt if there are ux,y € (L’VT““(/\')%)l such that s +, x =t and t +,, y = s,

sCt if there are x*,y* € (W!In(X)*)! such that 2* +, s =t and y* +, t = s
sJt if there are x,z*,y,y* € (W!'3(X)>)! such that «* +, s +, v = t and
Y At Any = s

The relations H is the interscction of the relations R and L, iec. H=R N L.
Finally, D is the product of R and L, ie. D=Ro L = Lo R, where Ro L =
{(s,1) : Ju € WIm(X)* such that (s,u) € R and (u,t) € L}. It is well known that
RULCDCJT.

First, we will prove that sRt if s = ¢ or s differs from ¢ only in one variable in X,,.
We mean that s differs from t only in one variable in X, if s can be obtained from ¢
by replacing only one variable from X, in s (let say «) by another variable from X,
in ¢ (let say y). One can easy verify that it is equivalent to s+, y = t and t+, ¢ = s.

Proposition 11. Let s,t € WH (X)), Then sRt if and only if s =t or |c(s) N
Xn| =1 and s differs from t only in one variable in X,,. : '

Proof. Suppose that |¢(s) N X,| = 1 and s differs from t only in one variable in
X, Then [c¢(t) N X,| =1 and there are z,y € X,, such that ¢(s) N X,, = {z} and
c(t) N X, = {y}. We can conclude that sRt.

Suppose now that sRt. Then there are ,y € (WH (X)) such that s 4,2 =t
and t +,y =8,1e. s =8+, (x+,y). fx =1 o0ry=1then s =t Supposc now
that z # 1 and y # 1. By Lemma 5, we have ¢(s) N X,, = or s =x +,y € X,
or s = fi(s1,...,8n,) 1s a composed term such that there is j € {1,...,n,} with
c(sk) N X, =0 for all k € {1....,n;}\{j} and c(s;) N X, = {z +,, y}. Note that
c(s)NX,, =0 and s+, x =t imply s =t (by Lemma 1). In the other both cases,
we can calculate that |¢(s)N X, | =1 and z+,y € X,. Clearly, z+,, vy € X,, implies
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r,y € X, by Lemmas 1 and 7. Now, we obtain that s differs from ¢ only in one
variable in X,,. This finishes the proof. O

In order to describe the L-relation for (WHR(X)®°; +,). we characterize the
pairs (s,t) € (WIM(X)%)? with s +, t = t. Note that op(s +, t) > op(t) for all
s,t € WIn(X)*® with ¢(s) N X,, # 0 by the verbal definition of S? and the fact
that s +, oo = oc, whenever ¢(s) N X, # 0.

Lemma 12. Let s,0 € WH (X)), Then s+, t = L if and only if s € X,, or s =1
with ¢(t) N X, = 0.

Proof. One dircetion is clear. Suppose that s +,, ¢ = t. Admit now that s ¢ X,,.
le.s=o0ors € X\X,,orop(s) >1.If s =cc,or s € X\ X, then s = s+, t = ¢,
where e(t) N X, =0, 1.e s =t with ¢(t) N X,, = (). Consider now the case op(s) > 1.
Assume that c¢(s) N X,, # @. Then op(t) = op(s +, t) > op(t), a contradiction.
Therelore, ¢(s) N X,, =0 and s+, t = s, i.c. s = . O

Proposition 13. Let s,t € WI7(X)*. Then sLt if and only if s = t or c(s), c(t) C
X\X,.

Proof. If ¢(s),¢(t) € X\ X, then s+, t =s and t +, s =t by Lemma 1, i.e. sLt.

Suppose now that s£t. Then there are x,y € (W1 (X)°)! such that @+, s =t
and y +, t = 5. In particular, we get (y +n2z) +, s =9 If y =1 or x = 1 then we
have s = t. Admit now that 2,7 # 1. By Lemma 12, we obtain y +, x € X,, or
y+n 1 = s with ¢(s) N X,, = 0. Suppose that y +, ¢ € X,,. It is easy to verify by
Lemmas 1 and 7 that 2,y € X,,, and thus s = y 4+, £ =t. Suppose that y +, v = s
with c(y+n2) N X, = 0. But e(y+na) N X, =0 implies s = (y+n,2) +n8 = (y+n1)
by Lemma 1, which provides ¢(s) = c(y +» ) € X\X,. Dually. we can show that
s=torc(t) =clz+,y) C X\X,. This completes the proof. O

Propositions 11 and 13 provide the Green‘s relation H = £ N R. It is the diagonal
on Whn(Xx)ee.

Corollary 14. H = {(s,5) : s € W"(X)>}.

Proof. Let s,t € WI"(X)® It holds sHt if and only if s = ¢ or both ¢(s) C X\ X,
(Proposition 13) and |e(s) N X,,| = 1 (Proposition 11). Since the latter one is not
possible, we conclude that sHt if and only if s = ¢. O

In particular, Corollary 14 shows that the H-classes arc singleton sets. It remains
to determine the J-relation (and the D -relation). It is clear that LUR C 7, but
for our semigroup, we have the equality.

Proposition 15. 7 = LUR.

Proof. Since LU R C 7. it remains to show the converse inclusion. For this let
5.t € WIn(X)%® with sJ¢t. Then there are x,z*,y,y* € (WI(X)*)* such that
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T Hps+tpr =tand y* +,t+,y = s If 2¥ = y* = 1 then sRt. Suppose now
that 2% # 1 or y™ # 1. Without loss of generality let z* # 1. If ¢(¢) N X,, = {§ then
t+ny =tand c(t+,y) N X, = 0. By Lemma 3, we obtain c¢(y* 4+, (t+,y)) N X,, = 0,
Le.e(s)N X, = 0. So, Proposition 13 provides s£t. Dually, we can conclude sLt
from ¢(s) N X,, = 0.

Suppose now that ¢(s) N X, # 0 and ¢(t) N X, # §. Then z*,y* # > and

4, syt 4t # oo, e both terms 2% 4+, s = S (27, s, ... 8) and YT 4+, t =
Sy, t,....t) arc lincar. and morcover, we have |¢(S7(x*.s,...,5)NX,| =
le(ST (y*,t,...,t))NX,] = 1 by Lemma 2. This implies 1,y # oo and
le(z*)NX,| = J|e(y*)NX,] = 1 by Lemmas 1 and 2. Assume that

r ¢ X, or yo ¢ X. Without loss of generality, let z* ¢ X,. Then
there is a natural number & > n with zp € ¢(z*). By Lemma 3,

we obtain wz, € ¢(S](Sh (2%, s, ...,8),x,...,x)) = ¢(t) and thus, xp €
(ST (Sh (vt 1),y . .,y)) = c(s). Hence, ¢ (S (z*,s,...,8)) = 2 by
Lemama 3, too, a contradiction to the linearity of SI(r*,s,...,s). Thercfore,
™, y" € X, and we conclude t = 2" 4+, s+, 0 = s+, cand s = y* 4+, t+,y = t+,y.
i.c. sRt. O

It is easy to verify that the Green‘s relation D coincides with J. In fact, we have

LURCDCJTJ=LUR,ie.D=LoR=/J.
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