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Deep Learning Algorithms for Predicting
Breast Cancer Based on Tumor Cells
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Abstract

This paper is the comparison of classification algorithms
Jor breast cancer based on tumor cell. We focus on using deep
learning algorithms to classify types of breast cancer with several of
activation function: Tanh, Rectifier, Maxout and Exprectifier. And
comparison with different machine learning methonds such as
Decision tree, Naive Bayes, Support Vector Machine, Vote, Random
Forest and AdaBoost. Experimental data were downloaded fiom
breast cancer Wisconsin dataset and using machine learning tool
rapidminer. Using ten-fold cross-validation. We achieve that the best
result of 96.99% accuracy with deep learning by Maxout and
Exprectifier activation function.

Keywords: Breast Cancer, Deep Learning Algorithms, Classification
Methods

I. INTRODUCTION

Breast cancer is one of the most common cancer in
women around the world, which is about 16% in adult women
that more than 50 year old (about 5% in less than 40 year old).
Breast cancer develops from the breast tissue. They have
different types of breast cancer classified my characteristic of
tumor cells that are benign and malignant tumor [12].

- Benign tumors

Benign tumors are not cancer. They can grow
anywhere in the body but cannot invade to other areas of body.
They often respond to the treatment and can be casily
removed.

- Malignant tumors

Malignant tumors are cancerous, which start from
abnormal cells that highly grow in out of control and have
ability to spread to other organs by circulating system or
lymphatic system. We call that spread Metastasis.

978-1-5386-8072-8/19/$31.00 ©2019 IEEE
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The common symptoms of breast cancer include a
lump in the breast has changed the shape of the breast skin
with fluid flow from the dimpled nipples or skin has red flakes
[13]. Moreover, cancer can invade to nearby lymph nodes and
cause swelling.

There are different machine learning methods for data
classification such as decision tree, naive bayes, support vector
machine, vote, random forest, adaBoost and Deep learning [7].
Each of the classification methods shows performance
differentiation of accuracy based on characteristic of datasets.

In our research, we compared the performance result
of various classification methods using deep learning method
with activation function: Tanh, Rectifier, Maxout and
Exprectifier [15]. Breast cancer dataset features consisting of
10 features in range (1-10) with clump thickness, uniformity of
cell size, uniformity of cell shape, marginal adhesion, marginal
adhesion, single epithelial cell size, bare nuclei, bland
chromatin, normal nucleoli and mitoses. And one target class
of benign tumor or malignant tumor with 698 number of
dataset.

II. RELATED WORK

In our research, we focus on the problem of
classification in major classes. Breast cancer is classified into
two classes, (benign tumor and malignant tumor cells) [11].
And we developed a technique for breast cancer classification
using deep learning with several of activation functions. Our
technique was compared with other classification methods.
Moreover, our technique effect to high accuracy and
performance for breast cancer classification method, which
easier than other methods [8].
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Deep learning

Deep learning is a branch of machine learning. The
basis of the in-depth learning algorithm that is trying to create
a model to represent the meaning of high level information by
creating a data architecture that consists of several smaller
structures and each of them has to come from the non-linear
transformation. This method considered the high potential in
dealing with feature for unsupervised learning or supervised
learning [6]. It is based on a multi-layer foed-forward artificial
neural network which is trained with stochastic gradient
descent using back-propagation. The pre-activation neuron
which is the form of a nonlinear combination of inputs with
weights and bias were used by neurons in hidden layers [5].
And then it will pass into activation functions. That network
contain a large number of hidden layers consisting of neurons
with tanh, rectifier and maxout activation functions.

[II. MATERIALS AND METHODS

1) Dataset

In the prepare dataset section of the research, we were
extracted from breast cancer Wisconsin dataset (Available at
https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsi
n+(original)) to impute with the missing data values by
average value before using the classification algorithm shown
in tablel.

Tablel Numbers and percentages of breast cancer based on
tumor cells.

Class Number of Percentage
data set (%)
Benign tumor 457 65.47
Malignant tumor 241 34.53
Total 698 100.00

2) Activation function of deep learning

a. Tanh

Tanh or Hyperbolic tangent function (like a scaled
and shifted sigmoid) is a mathematical function. . L'Abbe Sauri
first used in his work (1774). The tanh is simple function and
better than the sigmoid that the output is between -1 and 1,
which is to be centered on the center. The problem is not
causing the zigzag of gradients. It defined as the relative with
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hyperbolic sine and cosine functions. This function is defined
by

2 -z

=e
- (M

gl Z) = sinh( z) _ e

cosh( z) e’

Fe

where z is the point of half-deference and half-sum of two
exponential functions

b. Rectifier

Rectified linear unit is popular function. This
activation function has bounded from zero, but the above
solution is not bounded vanishing gradient that it is bounded
from zero. It will make a neuron with the center comes out so
much that you are inactive neurons [10]. It chooses the
maximum of (0, x) define as:

S(x) = max( 0, x) 2

where x is the input to neuron

c. Maxout
The maxout model is type of activation function and a
multilayer which applying the hidden activations [1]. Given an

input vector x € * and the output of A(x) will divide z
into groups of k values [2].
h,(x)=max z, 3)

Jellk]

dxnock
where z, !

=xTW...ij+b,.j,and W en and

beN™ areall learned parameters.

d. Exprectifier.

ExpRectifier or Exponential Rectifier Linear Unit
function is a considered generalization of the mean activation
to zero which learn in conditions. It is better than rectified
linear unit for accuracy of classification [14].

[x
fx)=4
late™ - 1)

if x >= 0 otherwise

)

wherea is a hyper-parameter to be tuned and a >= 0is a
constraint.
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IV.RESULTS AND DISCUSSION

The evaluated performance of the different methods
for classifying breast cancer into benign tumor and malignant
tumor classes was performed on 698 number of dataset.

In Table 2 shows the comparison of several
classification methods performance for breast cancer.

Table 2 Performance of breast cancer classification methods

We used deep learning with activation function to
classify and make ten-fold cross validation. Moreover, we
compared methods with decision tree, naive bayes, support
vector machine, vote, random forest and adaBoost [9].

Precision Recall F-measure
Methods

Malignant Benign Malignant Benign Malignant Benign ACC
Deep Learning (Tanh) 93.60 98.44 97.10 96.50 95.32 97.46 96.70
Deep Learning (Rectifier) 94.33 98.23 96.68 96.94 95.49 97.58 96.85
Deep Learning (Maxout) 94.35 98.44 97.10 96.94 95.71 97.68 96.99
Deep Learning (Exprectifier) 94.35 98.44 97.10 96.94 95.71 97.68 96.99
Decision Tree 9124 97.53 95.44 95.19 93.31 96.35 95.27
Naive Bayes 91.09 98.64 97.51 94.97 94.19 96.77 95.85
SVM 95.00 97.16 94.61 97.37 94.80 97:27 96.42
Vote (DT+NB+SVM) 92.80 97.99 96.27 96.06 94.50 97.02 96.13
Random Forest 93.90 97.79 95.85 96.72 94.87 97.25 96.42
AdaBoost (DT) 93.06 97.13 94.61 96.28 93.83 96.70 95.70

The comparison performances with different learning with activation functions to compare with other

classification methods are shown in Table 2, that use the deep
learning with maxout and exprectifier activation function [4].
We achieved the best result of 96.99% accuracy which was
better than other computational methods. The best precision
performances of malignant were 95.00% for SVM [3] and
benign were 98.64% for Naive Bayes.

V. CONCLUSION

In our research, we show the classification methods can
be applied to the breast cancer classification problem based on
tumor cells. And table2 is summarizes of performance
comparison methods to classified the breast cancer into
malignant and benign tumor cell classes. We use the deep

classifications methods such as, decision tree, naive Bayes,
support Vector machine, vote, random forest and adaBoost to
classify breast cancer. The deep learning can proved to be
successful and make high performance. Because this method
will automatically select the features which are important for
classification directly from data and then decide which of the
features are responsible for achieving great results.
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