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Simple Load Disaggregation Library based on
NILMTK

Kitisak Osathanunkul
Department of Digital Technology Innovation
Faculty of Science, Maejo University
Chiang Mai, Thailand
kit_o@mju.ac.th

Abstract— Load disaggregation is a method to predict
appliance power usage from a household power meter reading.
A powerful open-source tool used in load disaggregation task is
called Non-Intrusive Load Monitoring Toolkit (NILMTK). The
toolkit provides many features such as built-in basic statistics,
evaluation metrics and disaggregation algorithm comparison.
However, it requires a steep learning curve. This can be difficult
and troublesome for an unexperienced researcher to get started.
Thus, this paper proposes a Simple Load Disaggregation (SLD)
library to allow users to get started with the load disaggregation
task quickly. The proposed library allows users to train and
disaggregate an appliance load within a few lines of codes. The
SLD modifies disaggregation algorithms from NILMTK. It
removes all unnecessary elements and focusing only on making
the load disaggregation task clean and simple.

Keywords—non-intrusive load monitoring, nilm, load
disaggregation, energy disaggregation.

I. INTRODUCTION

Load disaggregation is a technique of predicting an
individual appliance electricity used from a household power
meter reading. This technique is called Non-Intrusive
Appliance Load Monitoring (N ALM or NILM). The idea was
firstly introduced in the mid-1980s by George Hart [1]. The
technique uses a pattern recognition and event-based methods.
Another technique [2] makes use of the combinatorial
optimization technique. It learns the sum of appliance power
consumption, then comparing this sum with the household
meter reading. These two techniques were widely studied and
it has been developed as disaggregation algorithm in an open-
source community called Non-Intrusive Load Monitoring
Tool-Kit (NILMTK) [3].

NILMTK is a python open source toolkit used in Non-
Intrusive Load Monitoring (NILM). It is designed to allow
researchers to work in this field with the same standard. So
that benchmarks between different disaggregation algorithms
can be compared using the toolkit. The features of NILMTK
is not limited to load disaggregation, but it can also provide
some data statistics, algorithm benchmark tools, evaluation
metrics, and etc.

Due to many features of NILMTK, researchers need to
study on the environment of NILMTK in order to get started.
For using just load disaggregation function in NILMTK, users
or researchers are required many steps to get started with the
task. The whole package of NILMTK is needed to be installed.
Then the users need to learn how to convert a dataset into
NILMTK format and to learn how to deal with NILMTK basic
commands and functions. Simply knowing a python language
is not enough. A steep learning curve is definitely needed for
unexperienced users.

In this paper, Simple Load Disaggregation is introduced to
fill the gap. It is designed for users with little to no experience
in this area. A load disaggregation function can be done by
simply importing a library, training a model, then an appliance
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load can be predicted right away. It skips all unnecessary
procedures required by NILMTK.

Section 1I discusses about related works. SLD is
introduced in Section III. Section IV compares SLD with the
original NILMTK in several aspects, and section V concludes

the paper.

II. RELATED WORKS

A. NILMTK

Non-Intrusive Load Monitoring Toolkit or NILMTK [3]is
a tool used in analysing load usage in a building. It is open
source toolkit written in python. It is available on Github with
a big community. Prior NILMTK published, it is almost
impossible to find a way to compare literature findings and
experiments in NILM. There is no standard in terms of
experiment setup, data acquiring, data format, and etc.
Therefore, NILMTK is introduced to tackle these issue. It is
designed to be a standard tool for NILM tasks, and to be used
among researchers. With NILMTK, researchers can have
some guidelines on how obtained data and predicted data to
be collected, stored, compared, evaluated and even
represented in the similar manner or format. Thus, the results
from disaggregation can be compared and discussed on the
performance of an algorithm used.

NILMTK includes several features such as dataset
conversion tools (to import dataset into NITLMTK
environment), several disaggregation algorithm  and
evaluation tools.

B. Public Dataset

In NILM, many public datasets are available for researcher
to work on. Datasets in NILM consists of both main power
meter reading and an appliance power reading. The sampling
rate of the dataset are typically ranges from 1 second to several
second, but some datasets may also provide a higher sampling
rate like 16kHz [4]. Popular NILM datasets are REDD [5],
BLUED [6] and UKDALE [4].

1) REDD: A public data set for energy disaggregation
[5] is published in 2011. It is the first dataset available for
NILM research. During that time, this dataset becomes a
standard dataset for researchers to benchmark their NILM
algorithm. REDD dataset obtained data from 6 different
houses in Massachusetts, US. REDD provides with both high
and low frequency sampling rate. However, a lower
frequency one is more useful as the data from the higher
frequency one is often redundancy.

2) BLUED: Building-Level fUlly-labelled dataset for
Electricity Disaggregation [6 ] is published by Kyle et al.
from Electrical and Computer Engineering, Carnegie Mellon
University, USA. The dataset provides both voltage and
current data sampled at 12kHz with the duration of one full



week. The strong point of this dataset is that the appliance
power data is labelled with a timestamp. That means ground
truth can be used to confirm disaggregation results when
evaluating algorithm.

3) UK-DALE: UK recording Domestic Appliance-Level
Electricity [4] is the first public UK dataset. The dataset
comes with a sampling rate of 16kHz for a whole house
power meter reading and every 6 seconds for individual
appliances. UK-DALE includes data from 5 houses with a
length of 2 to 4 years. With a long data collection period
allows researcher to investigate the nature of the data at the
different time of the year. For example, during winter a heater
is tend to be switched on more often or to consume more

electricity than in the summer. This dataset also introduced a
wireless device used for collecting its data.

C. Factorial Hidden Markov Model (FHMM)

Using Factorial Hidden Markov Model (FHMM)
algorithm for load disaggregation has been introduced by
Zoha et al. [7]. The idea of FHMM algorithm is to learn load
patterns for each appliance. Zoha’s experiments shows that
with 5 multi-state appliance, FHMM can achieve the f-
measure of 0.614. In addition, Kolter and Johnson [8] also
uses FHMM in the load disaggregation in their experiments.
Their results from REDD dataset shows the average accuracy
of 47.7%. In addition to the typical FHMM algorithm, many
researchers have proposed several variants to improve the
performance of this algorithm. For example, Kim et al. are
applying probabilistic models with FHMM in [9] and Parson
et al. adopt HMM and modify Viterbi algorithm in [10].

D. Combinatorial Optimisation (CO)

CO is another disaggregation algorithm proposed by Hart
et al [1]. CO reduces the difference between the sum of
predicted appliance load and the household power meter
reading data by finding the optimal combination of those
different states. It finds a sum of an appliance power usage,
and then uses this sum to compare with the one from a
household power meter reading.

III. SIMPLE LOAD DISAGGREGATION

Originally, disaggregation algorithm modules in NILMTK
are tied with its NILMTK environment. The module deals
with power data stored in the Hierarchical Data Format
(HDF5). This is well organized but it can be complicated to
understand. In order to allow unexperienced users to work
without a steep learning curve, a modification on the module
is needed. Here, Simple Load Disaggregation (SLD) is
introduced to fill this gap.

SLD presented in this paper is based on the original
NILMTK version 0.2. The purpose of this library is to make a
load disaggregation task simple and easy to use for an online
or a near real-time application. It is also written in python and
focus on using python dataframe rather than HDFS5 like the
original NILMTK. SLD is also published as a Github
repository in [11].

There are two disaggregation algorithms provided in
SLD; Factorial Hidden Markov Model (FHMM) and
Combinatorial Optimisation (CO). Both algorithms are
modified from NILMTK in similar manner where focusing

on working with python dataframe and remove all
unnecessary features apart from the load disaggregation
function.

The following subsection explains the requirement of
SLD, how to prepare data, how to create and train a model
and then finally how to disaggregate a whole house power
meter reading.

A. Software and Library Requirement

Disaggregation algorithms in SLD are a modification of
the disaggregation algorithm of the NILMTK. So it inherits
most of the major requirements from the original one.
However, SLD requires just enough software and libraries to
function a load disaggregation. The software and libraries

required are python, numpy, pandas and hmmlearn.

B. Data Preparing and Preprocessing

Before getting started with the load disaggregation
process, it is obvious that data is needed to be preprocessed in
a certain format. In order to keep the task simple, SLD library
required much less complicated data preprocessing to get
started. Just like any machine learning preparation process,
SLD library required two sets of data; training data and testing
data.

1) Training data

Training data is the data that is used to train a model. A
model can be more or less accurate depending on these
training data feeding to the model. Here, training data must be
included both main meter data (aggregated electricity meter
reading) and an individual appliance meter data.

To prepare a dataframe for training a model, both main
meter data and appliance meter data must be contained in the
same dataframe. It must include at least three columns;
timestamp, power and appliance meter reading. The example
of the dataframe is shown below.

timestamp power appl app2 app3
0 1525689485 23.30 0 0 0
1525689490 318.4 295.1 0 0
2 1525689495 318.7 295.4 0 0

1.1) Timestamp

The first required column is the timestamp. It is used to
identify the order of the event happened. Unlike the NIMLTK,
timezone and daylight saving will not be considered. The first
timestamp will be used as the reference point. It is
recommended to keep the timestamp in a Unix Epoc format in
which 10 decimal digit number. This column should be named
as “timestamp”.

1.2) Power

The second column is the training main meter data. It is
typically a reading from a main of a household, or it can be a
reading from a set of appliance depending on how the meter
data can be acquired. The unit of the reading can be in Watt or
kWatt. This column should be named as ‘power’.

1.3) Appliance

This rest of the column is the reading for individual
appliance. There must be at least one appliance meter data
included in the dataframe as it will be used to train a model.



In python, data from a CSV file can be imported to a
dataframe. It can be done by simply calling a method
read_csv() from pandas.

2) Testing Data

Similar to the training data, testing data should contain
timestamp and a house meter power. However, it does not
require individual appliance power data in the testing data. So
the format of the testing dataframe will be similar to the
following dataframe.

timestamp power

0 1525689485 23.3
L 1525689490 318.4
2 1525689495 318:7

The power data in the testing dataframe here will be
disaggregated into individual appliance power data later on.
The results of the disaggregation will be depending on the
model. If the model has been trained with 3 appliance data, the
result data will also contain 3 disaggregated appliance data as
well. The details of the model will be discussed in the later
section.

C. Creating and Training a Model

In order to disaggregate main meter data, model is needed
to be trained first. In SLD, models can be trained simply by
calling train() function. The function requires two arguments;
dataframe and a list of appliance. The dataframe is the one that
is prepared from the previous data preprocessing step. On the
other hand, a list of appliance must be stored as a python list.
In the list, it should contain at least one name of appliance to
be trained. A name of the appliance is stored as string type.

A list of appliance will be used to define how many
appliances will be trained in the model. So that when
disaggregating the main power, the number of appliance will
be the same as the number of appliance in the list. For
example, if three appliances like ‘kettle’, ‘microwave’ and
‘heater’ are focused, the python list should be as follow.

list_of_appliance = ['kettle', 'microwave', 'fan']

In addition, the name of the appliances in the list should
exactly be the same name as the one in the dataframe. During
the training process, each appliance will be used to train the
model one by one until all appliances in the list will be
included.

Given “df” is a dataframe containing data for a house,
“list_of appliance” is a list containing an appliance list and
fhmm is an object class for FHMM algorithm. The example
code of calling a training function can be as the following
code.

fhmm.train(df, list_of_appliance)

After calling the train() function, the model is created. This
model will be used to disaggregate an appliance power from
the main power later on.

After a model is created (or the first training, the model
can be further trained with another dataframe containing
another house to learn more information. Doing so will allow
the model to learn with different data from different houses.

The model can be stored for later use. This is because it is
useful for further training, which helps to make the model
more accurate. The saved model is small and fast to be loaded,
it can be used for a near real time application. To save or store
a model, it is recommended to use a python “pickle” library.
With pickle, the model will be saved in a file with the “pkl”
extension.

Here, SLD also provides a function to save and load a
model. It is done by calling save() and load() function. For
example, to save and to load a model to a file can be done by
the following command.

fhmm.save (“fhmm_trained_model”)

fhmm.load (“fhmm_trained_model”)

To save, a model will be stored to a file called
“fhmm_trained_model.pkl”. On the other hand, once the
model is reloaded, the same model will be ready to use as it is
the same model.

D. Load Disaggregation

Load disaggregation is the main function of this library. It
is used to extract appliance meter data from main meter data.
A result of disaggregated appliance meter data will be found
depending on a trained model and a selected algorithm. In
order to disaggregate a power meter reading, it can be done by
calling disaggregate() function. This function only requires
one argument which is a testing dataframe. The example for
calling this function is as follow.

prediction = fhmm.disaggregate (df)

This section has introduced SLD. This includes functions
and data format to get load disaggregation task done. The next
section will be discussed on what different between the SLD
and the original NILMTK.

IV. COMPARISONS BETWEEN SLD AND NILMTK

This section compares SLD with the original NILMTK in
different aspects. These are the software and library
dependency, data preparing and preprocessing, disaggregation
performance and feature and supports.

A. Software and Library Dependency

It is known that NILMTK requires lot of software and
libraries for its feature-rich tool kit. There can be a
troublesome when installing the NILMTK at the first time. A
dependency confliction issue is the main cause of error during
the installation process. This is because when the time goes by
some libraries might have been upgraded to a newer version.
Some library often requires a specific version of dependency
library. This can cause the installation fail and some attention
will be needed to resolve this issue. Installing NILMTK can
be difficult from this kind of issue.

On the other hand, SLD only focuses on load
disaggregation but it does not consider much about the details
or environment of the data. So SLD required only few
software and libraries just enough for disaggregation function
to work. Its requirements are only python, numpy, pandas and
hmmlearn. With this little requirements, SLD can be easily to
install or import, and ready to get started easily.



Table I shows the list of the requirements of NILMTK and
SLD. It is obvious that SLD requires less software and library

dependency to get started with load disaggregation task.

TABLE L SOFTWARE REQUIREMENTS OF NILMTK AND SIMPLE
LOAD AGGREGATION (SLA) LIBRARY
Software and library NILMTK SLD
Python >=3.6 >=3.6
Numpy >=1.13.3 >=1.13.3
Pandas >=(.25.0 >=(.25.0
Cython >=0.27.3 Not required
Bottleneck == 1.2:1 Not required
Numexpr >=2.6.4 Not required
Matplotlib >=3.1.0 Not required
Networkx =21 Not required
Spicy >=1.0.0 Not required
Scikit-learn >=(0.21.2 Not required
Hmmlearn Any Any
Pytables Any Not required
Jupyter Any Not required
iPython Any Not required
iPykernel Any Not required
Nose Any Not required
Coverage Any Not required
Psycopg?2 Any Not required
Coveralls Any Not required

B. Data Preparation and Preprocessing

In NILMTK, this process can really be complicated and
confusing for unexperienced researcher. It requires a lot of
steps and some learning curves to get started. Data needs to be
arranged into its specific format called as NILMTK-DF
described in [9]. In the NILMTK-DF format, it is well
organized using the Hierarchical Data format (HDFS). It
provides lots of information such as metadata of a dataset,
electricity meter reading, water meter reading, gas meter
reading or even on-off switch data. The purpose of having this
kind of format is to preserve as much information as possible.
So that the other researcher can learn and understand on when,
where, how data can be obtained.

NILMTK does provide some tools to convert some public
dataset into NILMTK-DF format. For example, the RRED,
BLUE and UKDALE datasets are the most famous dataset.
Users can convert these datasets into NILMTK-DF format
with a single command. However, converting a custom dataset
in to NILMTK-DF format is not an easy task. A deep
understanding of the NILMTK structure is mandatory. This
procedure can be time consuming to convert a custom dataset
into the right format. In contrast, SLD requires data
preparation in a simple python dataframe. The format is clean
and simple to understand. Users can simply prepared data in
Microsoft Excel and import to dataframe easily. At this point,
SLD allows users to prepare data in order to get started
quickly.

C. Disaggregation Performance

When considering a disaggregation performance between
NILMTK and SLD. Both of them does predict the exactly
same results. This is because SLD modifies the disaggregation
algorithm module from NILMTK. The modifications were to
remove all unnecessary features and leave only the
disaggregation function untouched. As a result, the SLD
library can predict an appliance load with the same results.

D. Feature and Supports

NILMTK community has been published as Github
repository since 2014. At the time of writing this paper it has
been forked for almost 300 times with over 20 contributors. It
contains lots of features such as dataset conversion, power
meter selection (in case one house has several meters), basic
statistics, evaluation metrics, disaggregation algorithm
comparison and etc. As this is an open source community,
NILMTK has a volunteer to support when users or researcher
get stuck at some point.

On the other hand, SLD is pretty simple. It has only one
feature. That is load disaggregation. SLD may have much less
features when comparing to NILMTK, but it is also easy to
understand and get going.

V. CONCLUSIONS

Simple Load Disaggregation library (SLD) is introduced.
It predicts appliance electricity used from a house electricity
meter reading. The main idea of SLD is to make load
disaggregation job easy to use. Disaggregation algorithms
from NILMTK is modified. SLD removes all unnecessary
elements, and leave the core of disaggregation algorithm
untouched. SLD is simple and easy to use, while it stills
perform the same results as the original NILMTK.
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