

บันทึกขอความ

ပမ်.၀၀၈/၁၃

สวัสดิ์ คณบดีวิทยาศาสตร์ หลักสูตรวิทยาศาสตรบัณฑิต สาขาวิชาเทคโนโลยีสารสนเทศ โทร 3900
ที่ อว 69.5.8/041 วันที่ 10 มีนาคม 2564

เรื่อง ข้อมูลงานสรุปเนื้อหาและการนำไปใช้ประโยชน์

เรียน คณบดีคณวิทยาศาสตร์

ตามบันทึกข้อความที่ 朝 69.5.8/002 ลงวันที่ 6 มกราคม 2564 ได้อุปถัมภ์ให้เข้ามาร่วมประชุมวิชาการระดับนานาชาติ “The ๖th International Conference on Digital Arts, Media and Technology (DAMT) and ๔th ECTI Northern Section Conference on Electrical Electronics, Computer and Telecommunications Engineering (NCON)” ECTI DAMT and NCON ๒๐๒๑ พร้อมเสนอผลงานทางวิชาการ และตามบันทึกข้อความที่ 朝 69.5.8/014 ลงวันที่ 1 กุมภาพันธ์ 2564 ได้อุปถัมภ์ให้เปลี่ยนแปลงรายละเอียดในการเข้าร่วมประชุมวิชาการระดับนานาชาติและเสนอผลงานทางวิชาการเป็นการเข้าร่วมประชุมวิชาการ และนำเสนอผลงานผ่านช่องทางออนไลน์ นั่น

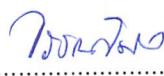
บันทึกนี้ ข้าพเจ้าได้เข้าร่วมนำเสนอผลงานวิชาการ ณ งานประชุมวิชาการ ECTI DAMT and NCON 2021 เป็นที่เรียบร้อยแล้ว ดังนั้นจึงขอรายงานสรุปเนื้อหาและประโยชน์ที่ได้รับ ดังนี้

1. สรุปเนื้อหาที่ได้รับจากการเข้าประชุม/อบรม ฯลฯ

จากการเข้าร่วมประชุมวิชาการครั้งนี้ได้รับความรู้ที่สามารถนำมารัฐนความเชี่ยวชาญของตนเอง ในด้านระบบการให้คำแนะนำ ในการเข้าร่วมครั้งนี้ได้ส่งผลงานวิชาการเข้าร่วมตีพิมพ์เผยแพร่ ในหัวข้อเรื่อง Alternative-Ingredient Recommendation Based on Thai Recipe วัตถุประสงค์ของงานวิจัยนี้ ต้องการช่วยเหลือผู้ประกอบอาหารไทยทั้งชาวไทยและชาวต่างประเทศ สามารถประกอบอาหารไทยได้อย่างสร้างสรรค์และสมบูรณ์จากการใช้ระบบการคำแนะนำการใช้วัตถุดิบที่เป็นทางเลือก เนื่องจากอาหารไทยเป็นที่รู้จักอย่างแพร่หลายทั่วโลกและมีการเผยแพร่สู่ต่างประเทศ พร้อมขั้นตอนการประกอบอาหารบนเว็บไซต์อาหาร ให้กับผู้ประกอบอาหารนำไปประกอบอาหารไทย แต่ในขณะเดียวกันการประกอบอาหารไทยอาจมีความยุ่งยากในด้านการจัดเตรียมวัตถุดิบให้เป็นไปตามสูตรอาหารสำหรับผู้เริ่มต้นประกอบอาหารทั้งชาวไทยและชาวต่างชาติ ด้วยเหตุผลนี้หากสามารถแนะนำวัตถุดิบอื่นที่สามารถใช้ทดแทนและเป็นทางเลือกให้กับผู้ประกอบอาหารนำไปใช้ได้ จะเป็นการช่วยผู้ประกอบอาหารมีทางเลือกในการใช้วัตถุดิบเพิ่มขึ้น อีกทั้งยังช่วยลดขั้นตอนและเวลาในการจัดเตรียมวัตถุดิบได้ ดังนั้นเพื่อส่งเสริมยุทธศาสตร์ชาติเกี่ยวกับเมืองนวัตกรรมอาหารในอนาคต หรือ “Food Innopolis” และส่งเสริมทางวิชาการข้ามศาสตร์ ในการวิจัยครั้งนี้ใช้วิธีการ ออกแบบและพัฒนาต้นแบบระบบการหาวัตถุดิบที่เป็นทางเลือกหรือทดแทนในสูตรอาหารไทยด้วยเทคนิค smoothed correlation weight function และเทคนิค Strongly Connected Component (SCC) ความท้าทายในการ

วิจัยครั้งนี้คือความพยายามในด้านวิธีการจับคู่หางานวัตถุดิบแทนหรือทางเลือก (alternative ingredient) ที่มีลักษณะคล้ายคลึงกับวัตถุดิบที่ต้องการแลกเปลี่ยน (exchange-ingredient) และเหมาะสมกับการนำไปใช้ประกอบอาหารในแต่ละสูตรอาหาร ในการพัฒนาอัลกอริทึมของงานวิจัยและการทดสอบ ประสิทธิภาพของอัลกอริทึมจะใช้ชุดข้อมูลอาหารออนไลน์ Yummly ซึ่งมีความรวมและนำมาเผยแพร่สาธารณะในรูปแบบภาษาอังกฤษบนเว็บไซต์ www.lherranz.org/datasets/

2. ประโยชน์ต่อการปฏิบัติงานในตำแหน่งหน้าที่


1. ได้พัฒนาความเชี่ยวชาญของตนเอง และสามารถนำผลงานที่พัฒนาตีพิมพ์เผยแพร่ครั้งนี้ยื่นขอ กำหนดตำแหน่งทางวิชาการ
2. นำความรู้ที่ตนพัฒนาถ่ายทอดประสบการณ์การวิจัยสู่ชั้นเรียนในรายวิชา ทล 232, 323, 332
3. การสร้างผลงานและชื่อเสียงให้กับตนเอง
4. ได้รับแนวทางในการพัฒนาวิธีการจัดทำระบบการให้คำแนะนำในด้านการแนะนำวัตถุดิบที่เป็น ทางเลือกในสูตรอาหารไทย

3. ประโยชน์ต่อหน่วยงาน (ระดับงาน/หลักสูตร/คณะ)

1. การสร้างผลงานวิชาการ ตีพิมพ์เผยแพร่ระดับนานาชาติให้กับทางหลักสูตร คณะ มหा�วิทยาลัย และ กระทรวงวิทยาศาสตร์และเทคโนโลยี
2. การเผยแพร่องค์ความรู้ที่ได้รับให้บุคลากรภายในองค์กรทราบ
3. ได้นำวัตกรรมทางเทคโนโลยีใหม่ที่สามารถนำไปสู่การวิจัยนวัตกรรมอุตสาหกรรมอาหารไทย
4. ได้ต้นแบบระบบการให้คำแนะนำวัตถุดิบที่เป็นทางเลือกหรือแทนให้กับสูตรอาหารไทยโดยกลุ่ม วัตถุดิบที่แนะนำนั้นสามารถนำไปใช้แทนวัตถุดิบที่ต้องการแลกเปลี่ยนโดยอย่างเหมาะสม และสามารถ เพิ่มทางเลือกในการเลือกใช้วัตถุดิบในการประกอบอาหารไทยให้กับผู้ใช้

พร้อมนี้ได้แนบ ผลงานตีพิมพ์เผยแพร่เรื่อง Alternative-Ingredient Recommendation Based on Thai Recipe จากการเข้าประชุม/อบรมฯลฯ มาพร้อมนี้แล้ว จำนวน....1.....ชุด

จึงเรียนมาเพื่อโปรดทราบ

(.....)

นางสาววรรณวิมล นาดี
พนักงานมหาวิทยาลัย ตำแหน่ง อาจารย์

ความคิดเห็นของผู้บังคับบัญชาชั้นต้น (ประธานอาจารย์ผู้รับผิดชอบหลักสูตร/ผู้อำนวยการ
สำนักงาน/หัวหน้างาน)

บุคลากรดังกล่าวได้ทำความรู้สึกใช้ประโยชน์ดังนี้ (โปรดระบุรายละเอียด)

ผู้สอนเรียนเพลินมาก ให้ความช่วยเหลือดีมาก ทั้งในเรื่องการสอนและการติว

(อาจารย์ ดร.สายัณห์ อุณณากาศ)

ประธานอาจารย์ผู้รับผิดชอบหลักสูตร สาขาวิชาภาษาไทย สาขาวิชาสตรีศึกษา สาขาวิชาแพทยศาสตร์บัณฑิต

หมายเหตุ : 1. เอกสารแนบเช่น สำเนาบทคัดย่อ หรือใบลิตรอวัสดน์ (เอกสาร A4) หรือบันทึกความย ดบันทึกสำเนาที่ได้รับรองหรือหัวรับผิดชอบ
รับรองหรือใบบัตรห้องเรียนที่ออกโดยบัตรฯ ซึ่งเป็นหลักฐานว่าได้เข้าร่วมงานจริง
2. กรณีที่ประสงค์จะรายงานฯ กรณีไม่ต้องพัฒนาบุคลากรหรือไม่ใช่บัตรฯ ให้แนบไฟล์
3. ให้แนบแบบและข้อมูลที่พื้นที่ตามรายละเอียดเนื้อหาหรือข้อความ ตามความเหมาะสม

ECTI

DAMT & NCON 2021

3-6 March 2021
Online Conference

Welcome to ECTI DAMT & NCON 2021

The 6th International Conference on Digital Arts, Media and Technology (DAMT) and 4th ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunications Engineering (NCON)

On behalf of the ECTI DAMT & NCON, the organizing committee is delighted to invite you to the 6th International Conference on Digital Arts, Media and Technology (DAMT) and 4th ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunications Engineering (NCON), to be held as a hybrid conference, offering both onsite face-to-face sessions and online sessions, between 3rd to 6th March 2021. ECTI DAMT & NCON is the most comprehensive technical conference focused on the role of Information and Communication Technologies (ICT) organized by academics from 6 major universities in Northern Thailand: Chiang Mai University, Maejo University, Narasuan University, Mae Fah Luang University, Chiang Rai Rajabhat University, and University of Phayao. Moreover, Mahidol University, Thailand's top-ranked university, will be jointly held for this year. The ECTI DAMT & NCON 2021 conference will feature world-class presentations by internationally renowned speakers, cutting-edge session topics and provide a fantastic opportunity to network with like-minded professionals from around the world.

We are excited about the opportunity to innovate by creating an engaging our conference that will be rewarding for both presenters and attendees. Finally, we hope to provide an exceptional value for researchers, developers, designers, engineers and technologists.

General Chair
Pradorn Sureephong

Welcome Message from the Technical Program Chair of ECTI DAMT and NCON 2021

Welcome, all guests of honor. On behalf of the Technical Program Committee, we are pleased to welcome you to the ECTI DAMT and NCON 2021. The conference technical program consisting of 4 online keynote sessions, 14 main tracks, and 3 special sessions.

We received a total of 110 paper submissions from 15 countries, out of which 89 papers have been accepted for the online presentation and published in the conference proceedings. Every paper went through a rigorous review process, in which each paper received at least three expert reviews. All papers that have been presented in the conference will be published in the IEEE Xplore Digital Library.

We would like to express our deepest gratitude to all committees and all authors for their great contributions to the ECTI DAMT and NCON 2021. We look forward to seeing everyone at our virtual conference and, also at the ECTI DAMT and NCON 2022 which will be held in Chiang Rai, Thailand next year. Thank you very much.

Technical Program Chairs of the ECTI DAMT and NCON 2021

Krittika Kantawong, UP, Thailand

Walaiporn Singkhamfu, CMU, Thailand

Mayoon Yaibuates, CRRU, Thailand

Paween Khoenkaw, MJU, Thailand

Part Pramokchon, MJU, Thailand

Chayapol Kamyod, MFU, Thailand

Program Committee

Advisory Committee

Aicha Sekhari, Université Lyon 2, France
 Abdelaziz Bouras, Qatar University, Qatar
 Hamed Yahoui, Université Lyon 1, France
 Sinchai Kamolphiwong, PSU, Thailand
 Kosin Chamnongthai, KMUTT, Thailand
 Prayoot Akkaraekthalin, KMUTNB, Thailand

Steering Committee

Aicha Sekhari, Université Lyon 2, France
 Albena Mihovska, Aarhus University, Denmark
 Agata Manolova, Aarhus University, Denmark
 Amir Qayyum, Mohammed Ali Jinnah University, Pakistan
 András Gábor, Corvinus University of Budapest, Hungary
 Bhawani Shankar Chaudhary, MUET, Pakistan
 Dipak Chougule, Kolhapur Institute of Technology, India
 Gilles Neubert, University of Lyon, France
 Jackrit Suthakorn, MU, Thailand
 Javier Poncela, University of Malaga, Spain
 Keshav Dahal, University of the West of Scotland, UK
 Kreangsak Tamee, NU, Thailand
 Muhammad Aamir, SSUET, Pakistan
 Nattapon Kumyaito, NU, Thailand
 Nidup Dorji, Royal University of Bhutan, Bhutan
 Noppasit Chakpitak, CMU, Thailand
 Pradorn Sureephong, CMU, Thailand
 Pumipong Duangtang, CRRU, Thailand
 Rameshwar Rijal, Kantipur Engineering College, Nepal
 Ridha Derrouiche, EM Strasbourg, France
 Roungsan Chaisricharoen, MFU, Thailand
 Sandeep Shrinivas Inamdar, Vishwaniketan, India
 Thitirath Cheawsuwan, UP, Thailand
 Thongchai Yooyativong, MFU, Thailand
 Wu Jun, CAS, China
 Yacine Ouzrout, Université Lyon 2, France

General Chair

Pradorn Sureephong, CMU, Thailand

General Co-chair

Pornthep Rojanavasu, UP, Thailand

Vice General Chair

Bowonsak Srisungsittisunti, UP, Thailand
 Narit Hnoohom, MU, Thailand
 Sakorn Mekruksavanich, UP, Thailand
 Teeravisit Laohapensaeng, MFU, Thailand
 Worawit Janchai, CMU, Thailand

Financial Chair

Kolanya Taya, UP, Thailand
 Vimolboon Cherapanukorn, CMU, Thailand

Technical Program Chair

Krittika Kantawong, UP, Thailand
 Chayapol Kamyod, MFU, Thailand
 Walaiporn Singkhamfu, CMU, Thailand

Technical Program Committee

Arunothai Pongwat, CMU, Thailand
 Danaitun Pongpatchartrontep, CMU, Thailand
 Fu Jing, Chengdu University, China
 Ingrid Rügge, University of Bremen, Germany
 Nattapol Aunsri, MFU, Thailand
 Part Pramokchon, MJU, Thailand
 Paween Khoenkaw, MJU, Thailand
 Punnarumol Temdee, MFU, Thailand
 Sakkayaphop Pravesjit, UP, Thailand
 Santichai Wicha, MFU, Thailand
 Shuang Cang, Bournemouth University, UK
 Sumeth Yuenyong, MU, Thailand
 Thana Udomsripaiboon, UP, Thailand
 Vimolboon Cherapanukorn, CMU, Thailand
 Yingrak Auttawaitkul, MJU, Thailand
 Mayoon Yaibuates, CRRU, Thailand

Publication Chair

Wanus Srimaharaj, MFU, Thailand

Publicity Chair

Thana Udomsripaiboon, UP, Thailand
 Warintorn Sokhom, UP, Thailand

Special Session Chair

Kaewarin Jandum, UP, Thailand
 Vimolboon Cherapanukorn, CMU, Thailand

Local Arrangement Chairs

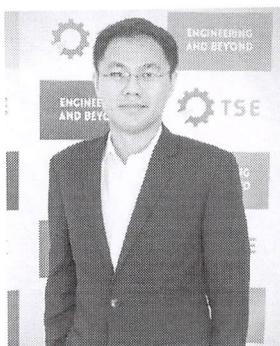
Konlakorn Wongpatikaseree, MU, Thailand

General Secretary

Nootchararat Thawadee, UP, Thailand
 Ploypailin Petchann, MU, Thailand

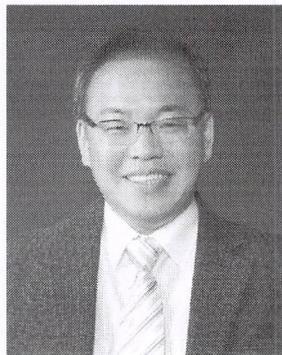
Additional Reviewers

Anuchit	Jitpattanakul	King Mongkut's University of Technology North Bangkok
Anusorn	Chaikaew	Chiangrai Rajabhat University
Arunotai	Pongwat	Chiang Mai University
Arus	Kunkhet	Chiang Mai University
Ava	Johnson	University of New Hampshire
Boontarika	Paphawasit	Chiang Mai University
Chalermporn	Kongjit	Chiang Mai University
Chartchai	Doungsa-Ard	Chiang Mai University
Chayan	Nuntawong	Nakhon Sawan Rajabhat University
Danaitun	Pongpatcharatorntep	Chiang Mai University
Jayakrit	Hirisajja	Chiang Mai University
Jirawit	Yanchinda	Chiang Mai University
Kemakorn	Chaiprasit	Chiang Mai University
Khomyuth	Chaiwong	Naresuan University
Kitisak	Osathanunkul	Maejo University
Kongkarn	Dullayachai	Maejo University
Kreangsak	Tamee	Naresuan University
Kriengsak	Yothapakdee	Loei Rajabhat University
Krittika	Kantawong	University of Phayao
Krittika	Kantawong	University of Phayao
Manisa	Piuchan	Chiang Mai University
Manissaward	Jintapitak	Chiang Mai University
Mayoon	Yaibuates	Chiangrai Rajabhat University
Narit	Hnoohom	Mahidol University
Nop	Kongdee	Chiang Mai University
Noppon	Choosri	Chiang Mai University
Paipan	Thanalerdsopit	Rajamangala University of Technology Lanna
Pakinee	Ariya	Chiang Mai University
Panuwat	Mekha	Maejo University
Panya	Jirajaracheep	BB Technology Co.,Ltd
Parinya	Suwansrikham	Chiang Mai University
Part	Pramokchon	Maejo University
Paween	Khoenkaw	Maejo University
Phasit	Charoenkwan	National Chiao Tung University
Phudinan	Singkhamfu	Chiang Mai University
Pradorn	Sureephong	Chiang Mai University
Pumipong	Duangtang	Chiang Rai Rajabhat University
Ratapol	Wudhikarn	Chiang Mai University
Roungsan	Chaisricharoen	Mae Fah Luang University
Sakkayaphop	Pravesjit	University of Phayao
Sakorn	Mekruksavanich	University of Phayao
Santichai	Wicha	Mae Fah Luang University
Sayan	Unankard	Maejo University
Somnuek	Sinthupuan	Maejo University
Sudarat	Arthan	University of Phayao
Sumet	Yordkaew	Chiang Mai University
Supansa	Chaising	Mae Fah Luang University
Pree	Thiengburanathum	Chiang Mai University
Passakorn	Phannachitta	Chiang Mai University


Surachart	Buachum	Chandrakasem Rajabhat University
Suwadee	Talawanich	Mahidol University
Teeraporn	Saeheaw	Chiang Mai University University
Thana	Udomsripaiboon	University of Phayao
Thanawut	Thanavanich	Chiangrai Rajabhat University
Thepparit	Sinthamrongruk	Chiang Mai University
Thiraphat	Meesumrarn	Nakhon Sawan Rajabhat University
Veeraporn	Siddoo	Prince of Songkla University
Vimonboon	Cherapanukorn	Chiang Mai University
Wanus	Srimaharaj	Mae Fah Luang University
Wanvimol	Nadee	Maejo University
Worasak	Rueangsirarak	Mae Fah Luang University

KEYNOTE SPEAKERS

Professor Minoru Okada


Biography: Minoru Okada received the B.E. degree in communications engineering from the University of Electro-Communications, Tokyo, Japan, in 1990. He received the M.E and Ph.D. degrees in communications engineering from Osaka University, Osaka, Japan, in 1992 and 1998, respectively. From 1993 to 2000, he was a Research Associate at Osaka University. From 1999 to 2000, he was a Visiting Research Fellow at University of Southampton, U.K. In 2000, he joined the Graduate School of Information Science, Nara Institute of Science and Technology, Nara, Japan, as an Associate Professor and became a Professor in 2006. His research interest is wireless communications, including WLAN, digital broadcasting, and satellite communications. Dr. Okada is a member of the Institute of Image, Information, and Television Engineers of Japan (ITEJ), the Institute of Television Engineers of Japan, the Institute of Electrical, Information, and Communication Engineers of Japan (IEICE), and the Information Processing Society of Japan (IPSJ). He received the Young Engineer Award from IEICE in 1999.

Associate Professor Charturong Tantibundhit

Biography: Charturong Tantibundhit received the B.E. degree in electrical engineering from Kasetsart University, Bangkok, Thailand, in 1996. He received the M.S degree in information science and Ph.D. degree in electrical and computer engineering from the University of Pittsburgh, Pittsburgh, Pennsylvania USA, in 2001 and 2006, respectively. He has received many honors and awards from his research fields: deep learning, image processing, and speech processing. In 2006, he joined the Department of Electrical and Computer Engineering, Thammasat University, Pathumthani, Thailand, as an instructor and become an assistant professor and an associate professor in 2009 and 2013 respectively. Moreover, he is currently the head of Speech and Language Technology Cluster, Center of Excellence in Intelligent Informatics, Speech and Language Technology, and Service Innovation (CILS), Faculty of Engineering, Thammasat University, Pathumthani, Thailand.

Abstract: AIChest4All is the name of the model used to label and screening diseases in our area of focus, Thailand, including heart disease, lung cancer, and tuberculosis. This is aimed to aid radiologist in Thailand especially in rural areas, where there is immense staff shortages. Deep learning is used in our methodology to classify the chest X-ray images from datasets namely, NIH set, which is separated into 14 observations, and the Montgomery and Shenzhen set, which contains chest X-ray images of patients with tuberculosis, further supplemented by the dataset from Udonthani Cancer hospital and the National Chest Institute of Thailand. The images are classified into six categories: no finding, suspected active tuberculosis, suspected lung malignancy, abnormal heart and great vessels, Intrathoracic abnormal findings, and Extrathroacic abnormal findings. A total of 201,527 images were used. Results from testing showed that the accuracy values of the categories heart disease, lung cancer, and tuberculosis were 94.11%, 93.28%, and 92.32%, respectively with sensitivity values of 90.07%, 81.02%, and 82.33%, respectively and the specificity values were 94.65%, 94.04%, and 93.54%, respectively. In conclusion, the results acquired have sufficient accuracy, sensitivity, and specificity values to be used. Currently, AIChest4All is being used to help several of Thailand's government funded hospitals, free of charge.

Professor Ilsun YOU

Biography: Dr. Ilsun YOU received the MS and PhD degrees in computer science from Dankook University, Seoul, Korea, in 1997 and 2002, respectively. He received the second PhD degree from Kyushu University, Japan, in 2012. From 1997 to 2004, he was at the THINmultimedia Inc., Internet Security Co., Ltd. and Hanjo Engineering Co., Ltd. as a research engineer. Now, he is a full professor at Department of Information Security Engineering, Soonchunhyang University. He has served or is currently serving as a General Chair or a Program Chair of international conferences and workshops such as WISA'19-20, MobiSec'16-19, AsiaARES'13-15, MIST'09-17, MobiWorld'08-17, and so forth. Dr. YOU is the EiC of Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications (JoWUA) and Journal of Internet Services and Information Security (JISIS). He is in the Editorial Board for Information Sciences (INS), Journal of Network and Computer Applications (JNCA), IEEE Access, International Journal of Ad Hoc and Ubiquitous Computing (IJAHUC), Computing and Informatics (CAI), and Journal of High Speed Networks (JHSN). Especially, he has focused on 4/5G security, security for wireless networks & mobile internet, IoT security and so forth while publishing more than 180 papers in these areas. He is a Fellow of the IET and a Senior member of the IEEE.

Abstract: 5G Security: The Beginning of Security for Next-Generation Telco-Applications

With the advent of the full-fledged 5G era, there is a growing expectation that 5G technology, which is characterized by ultra-fast, ultra-connected and ultra-low latency, will revolutionize our lives. Especially, 5G networks adopt edge cloud for application services within their area and provide network slicing based on network virtualization technologies to effectively support customized networks specialized for each application service. It is thus predicted that 5G will introduce innovative application services such as realistic contents, smart factories, autonomous vehicles, smart cities, and digital healthcare as well as lead the 4th industrial revolution.

In spite of such significant progress, 5G networks are followed by new and diverse security threats and attacks beyond our imagination, which cannot be addressed by traditional security technologies. Therefore, security is a necessary and sufficient condition for successful settlement of 5G networks. As the first step for 5G security, the 3GPP (3rd Generation Partnership Project) SA3, a working group responsible for security of telecommunication networks, has standardized 3GPP 5G security framework through its TS 33.501 document entitled "Security Architecture and

Procedures for 5G Systems". In this talk, 3GPP 5G security framework will be first outlined with its authentication, key management, and handover procedure, followed by the related works and research trends. Afterwards, focus will be on network slice security issues and secondary authentication, which is the key to opening the door for new security paradigm where each application is integrated with its best suit telecommunication and security service.

Professor Samur Thanoi

Biography: Samur Thanoi received the B.E. degree in occupational therapy from Chiang Mai University, Chiang Mai, Thailand, in 1993. He received Ph.D. degree in anatomy and cell biology from the University of Sheffield, Sheffield, United Kingdom, in 2000. He has received many honours and awards from his research fields: anatomy & cell biology, reproduction biology, and assisted reproduction technology. In 1994, he joined the Department of Anatomy, Faculty of Medicine, Naresuan University, Phitsanulok, Thailand, as an instructor and became an assistant professor and an associate professor in 2004 and 2008 respectively. Moreover, from 2018 to the present, he has joined the School of Medical Science, and has served as the Vice President for Research and Innovation, University of Phayao, Thailand. Finally, in 2020, he also becomes a professor of anatomy and cell biology for the research aspects of his academic career.

Abstract: Information and Communication Technology (ICT) has become very important in today life as it has been revealed that “the best brains of Europe come up with to improve health, wellbeing and ageing with the help of Information and Communication Technology (ICT)”. There have been several research and innovation projects created in Europe in the following types: Projects that managing your health and care, Projects that innovate the health and care system and the way it works. ICT solutions supporting active and healthy ageing projects and Projects funded by the SME Instrument, accelerating market introduction of ICT solutions for Health, Well-being and Ageing Well. These all projects will help patients who suffering from the diseases can manage their life properly or try to live their lives independently, as well as to allow their doctors or their caregivers to get access to their personal data and apply the most suitable treatments or programs for each individual. Moreover, big data created or collected from the digital platform can also be benefit for other people or organizations in order to develop appropriate program for treatment of preventive programs. In Thailand these days, mobile applications have been created for monitoring and preventing the spreading of Covid-19. Thai Chana and MorChana have been launched for monitoring the spreading while Rao Chana is used for economic subsidies for the needy during the Covid-19 pandemic..

Conference Programme

Please note that the author should join the conference session before your presentation time Video Conference via Zoom Webinar
Mar 3th, 2021 (Wednesday)

16.30 – 18.00		ECTI DAMT & NCON 2021 Steering Meeting (ICT Meeting room, School of ICT, University of Phayao)		
18.00 – 20.00		Welcome Party		
Mar 4th, 2021 (Thursday)				
09.00 – 10.30	SS3: Innovative Applications of Artificial Intelligence Room 1 Session Chair: Asst.Prof.Dr.Sakorn Mekruksavach	SS3: Innovative Applications of Artificial Intelligence Room 2 Session Chair: Dr.Narit Hnoohom	DAMT6: Digital Economy for Sustainable Growth DAMT6: Knowledge Management and Learning Organization Room 4 Session Chair: CMU	DAMT6: Knowledge Management and Learning Organization Room 4 Session Chair: CMU
10.30 – 10.45	SS3: Innovative Applications of Artificial Intelligence Room 1 Session Chair: Dr.Narit Hnoohom	SS3: Innovative Applications of Artificial Intelligence Room 2 Session Chair: Asst.Prof.Dr.Sakorn Mekruksavach	Coffee Break	DAMT6: Knowledge Management and Learning Organization Room 3 Session Chair: CMU
10.45 – 12.00	Paper ID: 69 Paper ID: 103 Paper ID: 104 Paper ID: 63 Paper ID: 67	Paper ID: 82 Paper ID: 83 Paper ID: 84 Paper ID: 85 Paper ID: 81	Paper ID: 29 Paper ID: 46 Paper ID: 50 Paper ID: 75 Paper ID: 80	NCON3: Information Technology Room 4 Session Chair: Asst.Prof.Dr.Kreangsak Tamee
14.15 – 14.30	Paper ID: 43 Paper ID: 51 Paper ID: 73 Paper ID: 77 Paper ID: 65	Paper ID: 44 Paper ID: 53 Paper ID: 107 Paper ID: 109 Paper ID: 68	Paper ID: 8 Paper ID: 11 Paper ID: 21 Paper ID: 24 Paper ID: 22	Coffee Break Keynote Speech #1 Distinguish Speaker (ROOM1) • Professor Minoru Okada, Ph.D. Nara Institute of Science and Technology, JAPAN
14.30 – 15.15				Keynote Speech #2 Distinguish Speaker (ROOM1) • Associate Professor Charturong Tantibundhit, Ph.D. Thammasat University, THAILAND
15.30 – 16.15				
ECTI DAMT & NCON 2021 Opening Ceremony (ROOM1)				

Conference Programme

Mar 5th, 2021 (Friday)						
09.00 – 10.15		NCON1: Devices, Circuits and Systems NCON4: Communication Systems NCON7: Power Electronics Room 1 Session Chair: Dr. Part Pramokchon	DAMT2: Multi-signal Processing and Applications Room 2 Session Chair: Dr. Paween Khoenkaw	NCON2: Computers Room 3 Session Chair: Asst.Prof.Dr. Kreangsak Tamee	NCON3: Information Technology Room 4 Session Chair: Asst.Prof.Dr.Thana Udomsripaliboon	
10.15 – 10.30		Paper ID: 5 Paper ID: 7 Paper ID: 20 Paper ID: 27		Paper ID: 31 Paper ID: 56 Paper ID: 105 Paper ID: 62	Paper ID: 32 Paper ID: 39 Paper ID: 40 Paper ID: 41 Paper ID: 62	
10.30 – 11.15		Coffee Break		Keynote Speech #3 Distinguished Speaker (ROOM1) • Professor Ii sun You, Ph.D. Soonchunhyang University, KOHAE	Keynote Speech #4 Distinguished Speaker (ROOM1) • Associate professor Samur Thanoi, Ph.D. University of Phayao, THAILAND	
11.15 – 12.00		DAMT1: Media Systems and Implementations, Dam3: Digital Arts and Media Room 1 Session Chair: CMU		SS3 CENTRAL Room 2 Session Chair: MFU	SS3 CENTRAL Room 3 Session Chair: MEU	
13.00 – 14.30		Paper ID: 26 Paper ID: 30 Paper ID: 33 Paper ID: 57 Paper ID: 10 Paper ID: 76		Paper ID: 52 Paper ID: 60 Paper ID: 61 Paper ID: 86 Paper ID: 87	Paper ID: 95 Paper ID: 96 Paper ID: 97 Paper ID: 98 Paper ID: 100	
14.30 – 14.45		NCON2: Computers NCON3: Information Technology Room 1 Session Chair: Dr.Sayan Unthankard		SS3 CENTRAL Room 2 Session Chair: MFU	SS3 CENTRAL Room 3 Session Chair: MFU	
14.45 – 16.00		Paper ID: 6 Paper ID: 48 Paper ID: 55 Paper ID: 66		Paper ID: 88 Paper ID: 89 Paper ID: 90 Paper ID: 91 Paper ID: 92	Paper ID: 101 Paper ID: 102 Paper ID: 106 Paper ID: 108	

Table of Contents

The effect of sound in VR exergame to adult player :a primary investigation	1
<i>Krergkiat Wongtai, Patison Palee and Noppon Choosri</i>	
Automatized Educational Chatbot using Deep Neural Network	5
<i>Mathawan Jaiwai, Kanokwatt Shiangjen, Surangkana Rawangyot, Thanakrit Kunsuree, Autchadaporn Sa-Nguanthong and Sakpan Dangmanee</i>	
Real-time Water Quality Monitoring and Notification System for Aquaculture	9
<i>Jomsuda Duangwongsa, Thepparath Ungsethaphand, Pradchayaporn Akaboot, Supakit Khamjai and Sayan Unankard</i>	
Alternative-Ingredient Recommendation Based on Correlation Weight for Thai Recipes ...	14
<i>Wanvimol Nadee and Sayan Unankard</i>	
Agricultural Year-Round Planning Model for Market-oriented Farms	18
<i>Jirabhorn Chaiwongsai, Narasak Boonthep, Yoshikazu Miyanaga, Thitirath Cheosuwan and Bhundit Innawong</i>	
Automatic Pencil Sketch Landscape Image Generation From Photograph	22
<i>Atiporn Khayan and Paween Khoenkaw</i>	
An Implementation of Programmable Oscillator for Inductive-Loop Vehicle Sensor Using Low-Cost Microcontroller	26
<i>Paween Khoenkaw</i>	
Using 3D Object Creation Techniques in order to complete 3D Models: A Case Study of the Phayao à¸ craftsman Buddha statue.....	31
<i>Jirawat Sookkaew and Apiwat Puntatong</i>	
Importance of Digital Arts in Interdisciplinary Context	38
<i>Tripti Singh and Tripti Singh</i>	
The design and development of Thai cultural inspiration to animation character	44
<i>Ekaraj Worasamutprakarn</i>	
Social Media Strategy For Batik SMEs Using Customer Knowledge Management	48
<i>Lu Wang, Atichart Harncharnchai and Teeraporn Sacheaw</i>	
The Proposed of a Smart Traceability System for Teak Supply Chain Based on Blockchain Technology	54
<i>Sai Woon Sheng Sai Woon Sheng and Santichai Wicha</i>	
Open Innovation in SMEs: A Review of Trends	61
<i>Kewalee Silapacharanan, Pittawat Ueasangkomsate and Haruthai Numprasertchai</i>	
Conceptualization and Research Trends on Authentic Leadership	65
<i>Ratikorn Intesarach and Pittawat Ueasangkomsate</i>	
Chinese Oral Ability Incubator Using LIA, CoPs and AAR	69
<i>Xinyue Zuo and Teeraporn Sacheaw</i>	

Alternative-Ingredient Recommendation Based on Correlation Weight for Thai Recipes

1st Wanvimol Nadee

*Information Technology Division, Faculty of Science
Maejo University
Chiangmai, Thailand
ORCID 0000-0001-5577-4108*

2nd Sayan Unankard

*Information Technology Division, Faculty of Science
Maejo University
Chiangmai, Thailand
ORCID 0000-0002-8443-5356*

Abstract—Cooking is a popular activity. Most people recently use recipes on the Website, which show the ingredients that are needed for a dish and the method of cooking. However, some of the listed ingredients sometimes are not able to prepare or use for cooking for some reasons: allergies, personal preference, or some ingredients are not available in the kitchen, etc. Therefore, it should recommend the alternative-ingredients that are similar to an exchange-ingredient and suitable with remained ingredients in the recipe. This paper proposes a recommendation system of alternative ingredients for Thai recipes. The recommended method is based on the combination of the smoothed correlation weight function and graph-based approach on the Thai recipe database. Our research contributes to enhancing the cooking beginners to cook Thai food and prepare ingredients conveniently by using the alternative-ingredients.

Keywords—Alternative ingredient recommendation, Food innovation, Text mining, Data mining, Recommendation system, Thai recipes.

I. INTRODUCTION

The recipe websites are a popular source of sharing recipes and cooking methods from different cuisines. They open a new door for people who are looking for their favorite dishes and want to try a new dish that they would never try. As the recipe websites make recipes easier to access, thereby people turn to recipe websites where they can share and find information easily. A recipe on the Website shows the ingredients that are needed for a dish and the cooking process. However, sometimes people want to cook an unfamiliar dish and they could not get all the ingredients listed on the recipe [1]. In other words, some of the listed ingredients sometimes are not able to prepare or use for cooking for some reasons: allergies, religions of individuals living, personal preference, some ingredients are not available in the kitchen or specific ingredients are not able to source the right ones at the moment [2]. To address these problems, we want to discover a suitable alternative-ingredient that goes well with the remained ingredients in that recipe for substitution.

Search and recommendation systems play an important role in the way people choose what they eat [3]. There has been much research on recipe recommendation systems that were developed for different purposes. Most existing works mainly focus on the analysis of recipes based on recipe content

(e.g., ingredient). For example, Sajadmanesh et al. [4] used the ingredients, taste, and cuisine information to understand culinary habit around the world. Elsweiler et al. [3] exploited the online recipe to help people to choose a healthier meal. They investigated users' behavior of how people perceive and select recipes. The machine learning techniques are applied to find the replacement recipes and predict the preferred recipes. Moreover, Shino et al. [2] and Yamanish et al. [5] conducted the alternative ingredients recommendation systems based on co-occurrence relation among ingredient category information. The basic idea of choosing alternative ingredients is based on the similarity and compatibility of ingredients in the same category. They mentioned the ingredients belonging to the same category of the exchanged-ingredient were more suitable as alternative-ingredient. Whereas Lui et al. [1] used the ingredients co-occurrence frequency along with category importance calculated from recipe data for each replacement. Their method can recommend suitable ingredients with a diversity of ingredients.

This paper proposes a recommendation system of alternative ingredients for Thai recipes. Thai cuisine is one of the world's great cuisines and is also a unique food. Cooking Thai food might not be easy for beginners regarding preparing the ingredients listed in the recipe. Due to they do not have a specific or main ingredient listed in the refrigerator. Thus, we need to find another ingredient that is suitable with the remained ingredients and in the same category in that recipe for replacement. For instance, we want to make Thai green curry but we cannot find the chicken in our kitchen. We might desire to use something other to replace chicken such as pork or beef or meat or seafood. The goal of this study is to enhance the cooking beginners to cook Thai food and prepare ingredients conveniently by using the alternative-ingredients. Our basic idea is to exploit the concept of co-occurrence of ingredients along with the smoothed correlation weight function to calculate the important weight give to each ingredient on recipe data. Then we leverage the strong relations among exchange-ingredients and other ingredients using the graph-based approach to capture the alternative-ingredients. The challenge of this work is how to discover the alternative ingredients that are similar and proper to an exchange-ingredient in the complex relationships between

ingredients.

The main contributions of this work are an approach based on the combination of three techniques that can find appropriate ingredients when recommending alternative ingredients. Furthermore, we use what we learn to establish the preliminary model of alternative ingredient recommendation for Thai recipes which considers only the main ingredient. The evaluation of our method based on the Thai recipe dataset collected from the Yummly website. The experimental results were compared with these two methods which demonstrate the proposed approach can improve the effectiveness of recommendations.

The rest of this paper as follows: Section 2 discusses related work in recipe recommendation systems and the alternative ingredient recommendation systems; Section 3 presents the proposed alternative ingredient recommendation method; Section 4 describes our experiments and analysis; Section 5 summarizes our findings and suggests possible future work.

II. RELATED WORKS

The study of food recommendation systems has been increasing due to their relevance for healthy living. The recipe content on the Web provides valuable information to the food research community. The studies on recipe mainly focus on recipe recommendation, menu recommendation, and ingredient replacement [1]. For example, food pairing focuses on a similar flavor of ingredients; if a flavor of an ingredient is similar to another one. The ingredients are suggested to be used together. The food pairing hypothesis has been studied for several modern cuisines. Earlier studies of food pairing are Ahn et al. [6] and Varshney et al. [7] examined a flavor network involving ingredients derived from recipe to capture their flavor bonds. Mao et al. [8] and GUO et al.[9] utilized the flavor pairing concept to recommend a set of dishes from the various Chinese regional cuisines for a certain flavor preference in terms of flavor similarity. The cosine similarity and the TF-IDF algorithm are applied to choose the dishes with the most similar flavors and recommend them to the users. Our work is related to an alternative ingredient recommendation system, which is used to recommend an alternative if a particular ingredient is not present or cannot be used in the recipe [10]. Previous works are proposed in [1], [2], [5], [11], the authors conducted the approaches based on co-occurrence relation among ingredient category information. The basic idea of choosing alternative ingredients is based on the similarity and compatibility of ingredients in the same category. They mentioned the ingredients belonging to the same category of the exchanged-ingredient were more suitable as alternative-ingredient. They define such an ingredient that cannot be used in the cooking as “exchange-ingredient”. Their method only recommending the ingredient in the same category, the suitable ingredients in different categories are not taken to consideration. While Lui et al. [1] mentioned that their algorithm ignores suitable ingredients in different categories. Then, they utilized the ingredients co-occurrence frequency along with category importance calculated from recipe data for

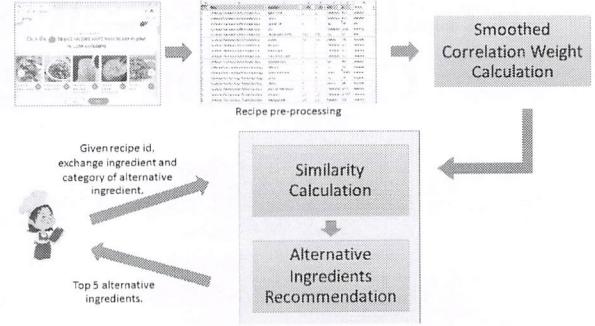


Fig. 1. The architecture of our system.

each replacement. Their method provides suitable ingredients with a diversity of ingredients. Maheshwari and Chourey [10] proposed a machine learning model to innovate new dishes and to help people allergic to certain ingredients by recommending alternate ingredients. It has shown that the ingredient co-occurrence frequency is widely used in the alternative-ingredient recommendations. However, our work relies on smoothed correlation weight function to calculate the important weight based on the relation among ingredients in the recipe. A graph-based approach is utilized to discover the relation between the exchange-ingredient and the replace ingredients.

III. PROPOSED METHOD

In this task, we present our approach to recommending alternative ingredient for Thai recipes. Figure 1 shows a conceptual framework of our approach. It can be divided into three steps: Recipe pre-processing, Smoothed correlation weight calculation, Similarity calculation and Alternative ingredients recommendation. The details of each step of our approach are given in the following.

A. Recipe Pre-processing

In order to improve the quality of our dataset and the performance of the proposed approach, the pre-processing is performed. Thai recipes are extracted from the dataset. We manually assigned each ingredient to a category and renamed the ingredient to the proper one such as “boneless beef steak”, “beef steak” and “beefsteak” to “beef steak”. Example of the dataset after pre-processing is shown in Table I.

TABLE I
 EXAMPLE OF THE DATASET AFTER PRE-PROCESSING.

Recipe Name	Ingredient	Quantity	Unit	Category
Tom Kha Gai	chicken	1	pound	meat
Tom Kha Gai	coconut milk	2	can	milk
Tom Kha Gai	coconut oil	3	tablespoon	oil
Tom Kha Gai	fish sauce	1	tablespoon	seasoning
Tom Kha Gai	galangal	2	tablespoon	vegetable
...

B. Smoothed correlation weight calculation

In this task, we aim to find the relationship between two ingredients. Our intuition is that ingredients frequently co-occur when they have meaningful relationships between them. To extract the set of co-occurring ingredients, the directed edge-weighted graph is created. The edge is created if the correlation weight score between two ingredients greater than zero. Example of the directed edge-weighted graph is show in Figure 2. We adopt the smoothed correlation weight function to calculate the semantic correlation weight between two ingredients. All ingredients are used to calculate the correlation weight between two ingredients because some ingredients can sometimes be both seasoning and primary ingredients in different recipes. The formula is shown below:

$$A = (n_{xy} + \frac{n_x}{N}) / (n_x - n_{xy} + 1) \quad (1)$$

$$B = (n_x - n_{xy} + \frac{n_x}{N}) / (N - n_x - n_y + n_{xy} + 1) \quad (2)$$

$$SCW_{x,y} = \log(\frac{A}{B}) \quad (3)$$

where $SCW_{x,y}$ is a correlation weight score between ingredient x and y , n_x is a number of recipes containing ingredient x , n_y is a number of recipes containing ingredient y , n_{xy} is a number of recipes containing both ingredient x and y , while N is the total number of recipes.

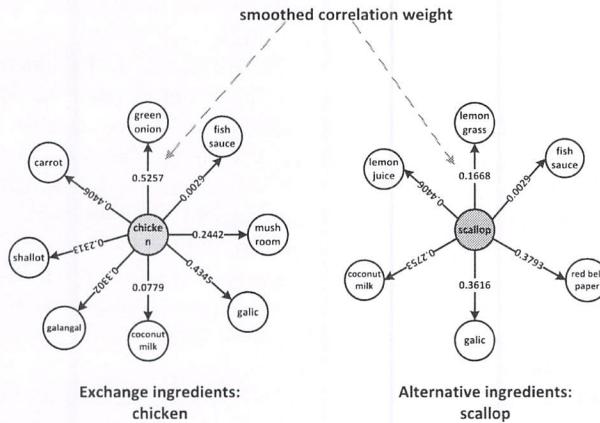


Fig. 2. Example of the directed edge-weighted graph.

C. Similarity calculation and Alternative ingredients recommendation

The problem that we address in this section is how to find the similarity of ingredients for the alternative recommendation. For a given category, a direct edge-weight graph of each ingredient in a given category is created. Each graph of candidate ingredient will be compared with the exchange ingredient graph. The cosine similarity between the two graphs will be used to find the similarity between the exchange ingredients and candidate alternative ingredients. The top 5 ingredients

with the highest similarity scores will be recommended to the user. The cosine similarity function is shown below:

$$iSim(ex, al) = \frac{\sum_i (SCW_{ex_i} \times SCW_{al_i})}{\sqrt{\sum_j SCW_{ex_j}^2} \times \sqrt{\sum_k SCW_{al_k}^2}} \quad (4)$$

where $iSim(ex, al)$ is a similarity value between ingredient ex and al while ex and al are directed edge-weighted graphs of exchange ingredient and alternative ingredient respectively.

IV. EXPERIMENTS AND EVALUATION

A. Dataset

The Yummly-28K recipe dataset collected from Yummly and provided by www.lherranz.org/datasets/ to develop our algorithms and evaluate the performance. We collected only Thai recipes which consist of 832 dishes and 868 ingredients.

B. Baseline

In order to evaluate our approach, we compare our approach performance with the co-occurrence frequency approach adopted from [2]. We calculated the occurrence frequency of an ingredient and the co-occurrence frequency of two ingredients. For solving an orthographical variant with a cooking ontology, we cannot perform this step because we do not have a cooking ontology. Then, the compatibility score between the ingredient and the recipe is calculated. The top 5 alternative ingredients with the highest scores of the proportion of alternative ingredients with compatibility score of all ingredients in a recipe database will be recommended.

C. Evaluation

In this section, we evaluate the performance of our approach. The experiments were conducted with four recipes. The four recipes of our evaluation are shown in Table II. The top 5 ingredients for a selected category are recommended. The example of the top 5 recommended ingredients is shown in Table III. For preliminary evaluation, we asked 7 participants who have Thai cooking experience from 6 countries (Thailand, Australia, Korea, Norway, Germany, and the other two from the USA) to evaluate whether the recommended ingredients were suitable as an alternative or not based on their experience on cooking. The participant will give a score (1-5) for each recommended ingredient. More point means the ingredient is more suitable for the replacement. The result of our evaluation is shown in Table IV. However, for the taste evaluation, we will conduct it in our future work.

TABLE II
THE FOUR RECIPES OF OUR EVALUATION.

Menu Name	Exchange ingredient	Alternative Category
Tom Kha Gai	chicken	meat, seafood
Thai Green Curry	coconut milk	milk, nuts
Thai Basil Beef	beef	meat, seafood
Thai Papaya Salad	green papaya	meat, seafood, vegetable, fruit

In Table IV, our approach achieves a higher average score over the baseline. The results show that most participants

TABLE III
THE EXAMPLE OF TOP 5 RECOMMENDED INGREDIENTS TO REPLACE “GREEN PAPAYA” FOR THAI PAPAYA SALAD.

	Vegetable	Fruit	Meat	Seafood
Baseline	ginger (9) lemongrass (11) red bell pepper (11) green onion (10) shallot (11)	mango (29) pineapple (17) coconut (11) coconut flakes (8) avocado (15)	chicken breast (18) chicken (16) chicken thighs (16) sirloin steak (18) boneless chicken thighs (17)	shrimp (20) red snapper (13) salmon fillet (19) prawns (18) whitefish fillets (13)
Our approach	green long beans (31) salad (24) green cabbage (26) shallot (11) cucumber (33)	mango (28) avocado (15) coconut (11) pomegranate seeds (10) pineapple (17)	chicken thighs (17) pork (17) ground pork (16) sirloin steak (18) boneless pork lion roast (15)	shrimp (19) salmon fillet (18) whitefish fillets (13) halibut fillets (13) prawns (18)

(x) is a total score from 7 participants given for each recommended ingredient.

TABLE IV
THE AVERAGE SUITABLE SCORE (1 - 5) OF OUR EVALUATION.

Participant	Country	Baseline	Our Approach
1	Thailand	2.52	2.84
2	Australia	3.30	3.56
3	Korea	3.08	3.40
4	Norway	2.66	2.70
5	USA	2.78	2.98
6	USA	2.46	2.20
7	Germany	2.46	2.64
	Average	2.75	2.90

prefer our recommended results except one participant from the USA. In addition, participants from Australia and Korea gave average scores greater than 3.00 while participants from the USA and Germany gave average scores less than 2.50. This may be due to the variety of ingredients in each country and individual preferences.

V. CONCLUSIONS

In this paper, an alternative-ingredient recommendation system for Thai recipes is proposed. The goal of this study is to effectively recommend alternative ingredients to replace a specific ingredient in a recipe. Our contributions are summarized as follows: (1) we introduced a recommendation approach of alternative ingredients for Thai recipes and (2) the incorporation between smoothed correlation weight and graph-based approach achieved better results than the baseline. In future work, we will further consider the quantity of each ingredient in the recipe. Cooking demonstration and taste evaluation will be conducted.

ACKNOWLEDGMENT

This research was supported by The Coordinating Center for Thai Government Science and Technology Scholarship Students (CSTS), National Science and Technology Development Agency (NSTDA).

REFERENCES

- [1] K.-H. Liu, H.-C. Chen, K.-T. Lai, Y.-Y. Wu, and C.-P. Wei, “Alternative ingredient recommendation: A co-occurrence and ingredient category importance based approach,” in *PACIS*, 2018, p. 298.
- [2] N. Shino, R. Yamanishi, and J. Fukumoto, “Recommendation system for alternative-ingredients based on co-occurrence relation on recipe database and the ingredient category,” in *2016 5th IIAI International Congress on Advanced Applied Informatics (IAAI-AAI)*. IEEE, 2016, pp. 173–178.
- [3] D. Elsweiler, C. Trattner, and M. Harvey, “Exploiting food choice biases for healthier recipe recommendation,” in *Proceedings of the 40th international acm sigir conference on research and development in information retrieval*, 2017, pp. 575–584.
- [4] S. Sajadmanesh, S. Jafarzadeh, S. A. Ossia, H. R. Rabiee, H. Haddadi, Y. Mejova, M. Musolesi, E. D. Cristofaro, and G. Stringhini, “Kissing cuisines: Exploring worldwide culinary habits on the web,” in *Proceedings of the 26th international conference on world wide web companion*, 2017, pp. 1013–1021.
- [5] R. Yamanishi, N. Shino, Y. Nishihara, J. Fukumoto, and A. Kaizaki, “Alternative-ingredient recommendation based on co-occurrence relation on recipe database,” *Procedia Computer Science*, vol. 60, pp. 986–993, 2015.
- [6] Y.-Y. Ahn, S. E. Ahnert, J. P. Bagrow, and A.-L. Barabási, “Flavor network and the principles of food pairing,” *Scientific reports*, vol. 1, p. 196, 2011.
- [7] K. R. Varshney, L. R. Varshney, J. Wang, and D. Myers, “Flavor pairing in medieval european cuisine: a study in cooking with dirty data,” *arXiv preprint arXiv:1307.7982*, 2013.
- [8] X. Mao, S. Yuan, W. Xu, and D. Wei, “Recipe recommendation considering the flavor of regional cuisines,” in *2016 International Conference on Progress in Informatics and Computing (PIC)*. IEEE, 2016, pp. 32–36.
- [9] L.-R. GUO, S.-Z. YUAN, X.-H. MAO, and Y.-N. GU, “A recipe recommendation system based on regional flavor similarity,” *DEStech Transactions on Computer Science and Engineering*, no. cimns, 2017.
- [10] S. Maheshwari and M. Chourey, “Recipe recommendation system using machine learning models,” 2019.
- [11] N. Shino, R. Yamanishi, and J. Fukumoto, ““co-occurrence relation” and “ingredient category” recommend alternative-ingredients,” in *New Trends in E-service and Smart Computing*. Springer, 2018, pp. 1–18.

Alternative-Ingredient Recommendation Based on Correlation Weight for Thai Recipes

1st Wanvimol Nadee

*Information Technology Division, Faculty of Science
Maejo University
Chiangmai, Thailand
ORCID 0000-0001-5577-4108*

2nd Sayan Unankard

*Information Technology Division, Faculty of Science
Maejo University
Chiangmai, Thailand
ORCID 0000-0002-8443-5356*

Abstract—Cooking is a popular activity. Most people recently use recipes on the Website, which show the ingredients that are needed for a dish and the method of cooking. However, some of the listed ingredients sometimes are not able to prepare or use for cooking for some reasons: allergies, personal preference, or some ingredients are not available in the kitchen, etc. Therefore, it should recommend the alternative-ingredients that are similar to an exchange-ingredient and suitable with remained ingredients in the recipe. This paper proposes a recommendation system of alternative ingredients for Thai recipes. The recommended method is based on the combination of the smoothed correlation weight function and graph-based approach on the Thai recipe database. Our research contributes to enhancing the cooking beginners to cook Thai food and prepare ingredients conveniently by using the alternative-ingredients.

Keywords—Alternative ingredient recommendation, Food innovation, Text mining, Data mining, Recommendation system, Thai recipes.

I. INTRODUCTION

The recipe websites are a popular source of sharing recipes and cooking methods from different cuisines. They open a new door for people who are looking for their favorite dishes and want to try a new dish that they would never try. As the recipe websites make recipes easier to access, thereby people turn to recipe websites where they can share and find information easily. A recipe on the Website shows the ingredients that are needed for a dish and the cooking process. However, sometimes people want to cook an unfamiliar dish and they could not get all the ingredients listed on the recipe [1]. In other words, some of the listed ingredients sometimes are not able to prepare or use for cooking for some reasons: allergies, religions of individuals living, personal preference, some ingredients are not available in the kitchen or specific ingredients are not able to source the right ones at the moment [2]. To address these problems, we want to discover a suitable alternative-ingredient that goes well with the remained ingredients in that recipe for substitution.

Search and recommendation systems play an important role in the way people choose what they eat [3]. There has been much research on recipe recommendation systems that were developed for different purposes. Most existing works mainly focus on the analysis of recipes based on recipe content

(e.g., ingredient). For example, Sajadmanesh et al. [4] used the ingredients, taste, and cuisine information to understand culinary habit around the world. Elsweiler et al. [3] exploited the online recipe to help people to choose a healthier meal. They investigated users' behavior of how people perceive and select recipes. The machine learning techniques are applied to find the replacement recipes and predict the preferred recipes. Moreover, Shino et al. [2] and Yamanish et al. [5] conducted the alternative ingredients recommendation systems based on co-occurrence relation among ingredient category information. The basic idea of choosing alternative ingredients is based on the similarity and compatibility of ingredients in the same category. They mentioned the ingredients belonging to the same category of the exchanged-ingredient were more suitable as alternative-ingredient. Whereas Lui et al. [1] used the ingredients co-occurrence frequency along with category importance calculated from recipe data for each replacement. Their method can recommend suitable ingredients with a diversity of ingredients.

This paper proposes a recommendation system of alternative ingredients for Thai recipes. Thai cuisine is one of the world's great cuisines and is also a unique food. Cooking Thai food might not be easy for beginners regarding preparing the ingredients listed in the recipe. Due to they do not have a specific or main ingredient listed in the refrigerator. Thus, we need to find another ingredient that is suitable with the remained ingredients and in the same category in that recipe for replacement. For instance, we want to make Thai green curry but we cannot find the chicken in our kitchen. We might desire to use something other to replace chicken such as pork or beef or meat or seafood. The goal of this study is to enhance the cooking beginners to cook Thai food and prepare ingredients conveniently by using the alternative-ingredients. Our basic idea is to exploit the concept of co-occurrence of ingredients along with the smoothed correlation weight function to calculate the important weight give to each ingredient on recipe data. Then we leverage the strong relations among exchange-ingredients and other ingredients using the graph-based approach to capture the alternative-ingredients. The challenge of this work is how to discover the alternative ingredients that are similar and proper to an exchange-ingredient in the complex relationships between

ingredients.

The main contributions of this work are an approach based on the combination of three techniques that can find appropriate ingredients when recommending alternative ingredients. Furthermore, we use what we learn to establish the preliminary model of alternative ingredient recommendation for Thai recipes which considers only the main ingredient. The evaluation of our method based on the Thai recipe dataset collected from the Yummly website. The experimental results were compared with these two methods which demonstrate the proposed approach can improve the effectiveness of recommendations.

The rest of this paper as follows: Section 2 discusses related work in recipe recommendation systems and the alternative ingredient recommendation systems; Section 3 presents the proposed alternative ingredient recommendation method; Section 4 describes our experiments and analysis; Section 5 summarizes our findings and suggests possible future work.

II. RELATED WORKS

The study of food recommendation systems has been increasing due to their relevance for healthy living. The recipe content on the Web provides valuable information to the food research community. The studies on recipe mainly focus on recipe recommendation, menu recommendation, and ingredient replacement [1]. For example, food pairing focuses on a similar flavor of ingredients; if a flavor of an ingredient is similar to another one. The ingredients are suggested to be used together. The food pairing hypothesis has been studied for several modern cuisines. Earlier studies of food pairing are Ahn et al. [6] and Varshney et al. [7] examined a flavor network involving ingredients derived from recipe to capture their flavor bonds. Mao et al. [8] and GUO et al.[9] utilized the flavor pairing concept to recommend a set of dishes from the various Chinese regional cuisines for a certain flavor preference in terms of flavor similarity. The cosine similarity and the TF-IDF algorithm are applied to choose the dishes with the most similar flavors and recommend them to the users. Our work is related to an alternative ingredient recommendation system, which is used to recommend an alternative if a particular ingredient is not present or cannot be used in the recipe [10]. Previous works are proposed in [1], [2], [5], [11], the authors conducted the approaches based on co-occurrence relation among ingredient category information. The basic idea of choosing alternative ingredients is based on the similarity and compatibility of ingredients in the same category. They mentioned the ingredients belonging to the same category of the exchanged-ingredient were more suitable as alternative-ingredient. They define such an ingredient that cannot be used in the cooking as “exchange-ingredient”. Their method only recommending the ingredient in the same category, the suitable ingredients in different categories are not taken to consideration. While Lui et al. [1] mentioned that their algorithm ignores suitable ingredients in different categories. Then, they utilized the ingredients co-occurrence frequency along with category importance calculated from recipe data for

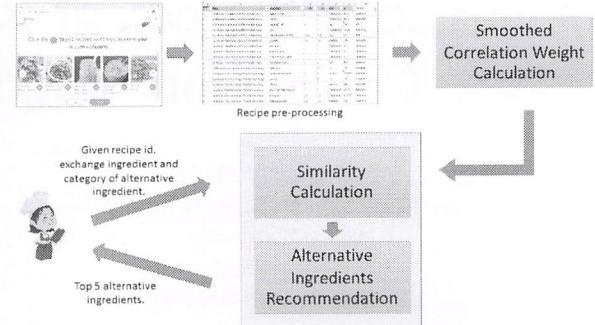


Fig. 1. The architecture of our system.

each replacement. Their method provides suitable ingredients with a diversity of ingredients. Maheshwari and Chourey [10] proposed a machine learning model to innovate new dishes and to help people allergic to certain ingredients by recommending alternate ingredients. It has shown that the ingredient co-occurrence frequency is widely used in the alternative-ingredient recommendations. However, our work relies on smoothed correlation weight function to calculate the important weight based on the relation among ingredients in the recipe. A graph-based approach is utilized to discover the relation between the exchange-ingredient and the replace ingredients.

III. PROPOSED METHOD

In this task, we present our approach to recommending alternative ingredient for Thai recipes. Figure 1 shows a conceptual framework of our approach. It can be divided into three steps: Recipe pre-processing, Smoothed correlation weight calculation, Similarity calculation and Alternative ingredients recommendation. The details of each step of our approach are given in the following.

A. Recipe Pre-processing

In order to improve the quality of our dataset and the performance of the proposed approach, the pre-processing is performed. Thai recipes are extracted from the dataset. We manually assigned each ingredient to a category and renamed the ingredient to the proper one such as “boneless beef steak”, “beef steak” and “beefsteak” to “beef steak”. Example of the dataset after pre-processing is shown in Table I.

TABLE I
EXAMPLE OF THE DATASET AFTER PRE-PROCESSING.

Recipe Name	Ingredient	Quantity	Unit	Category
Tom Kha Gai	chicken	1	pound	meat
Tom Kha Gai	coconut milk	2	can	milk
Tom Kha Gai	coconut oil	3	tablespoon	oil
Tom Kha Gai	fish sauce	1	tablespoon	seasoning
Tom Kha Gai	galangal	2	tablespoon	vegetable
...

B. Smoothed correlation weight calculation

In this task, we aim to find the relationship between two ingredients. Our intuition is that ingredients frequently co-occur when they have meaningful relationships between them. To extract the set of co-occurring ingredients, the directed edge-weighted graph is created. The edge is created if the correlation weight score between two ingredients greater than zero. Example of the directed edge-weighted graph is show in Figure 2. We adopt the smoothed correlation weight function to calculate the semantic correlation weight between two ingredients. All ingredients are used to calculate the correlation weight between two ingredients because some ingredients can sometimes be both seasoning and primary ingredients in different recipes. The formula is shown below:

$$A = (n_{xy} + \frac{n_x}{N}) / (n_x - n_{xy} + 1) \quad (1)$$

$$B = (n_x - n_{xy} + \frac{n_x}{N}) / (N - n_x - n_y + n_{xy} + 1) \quad (2)$$

$$SCW_{x,y} = \log(\frac{A}{B}) \quad (3)$$

where $SCW_{x,y}$ is a correlation weight score between ingredient x and y , n_x is a number of recipes containing ingredient x , n_y is a number of recipes containing ingredient y , n_{xy} is a number of recipes containing both ingredient x and y , while N is the total number of recipes.

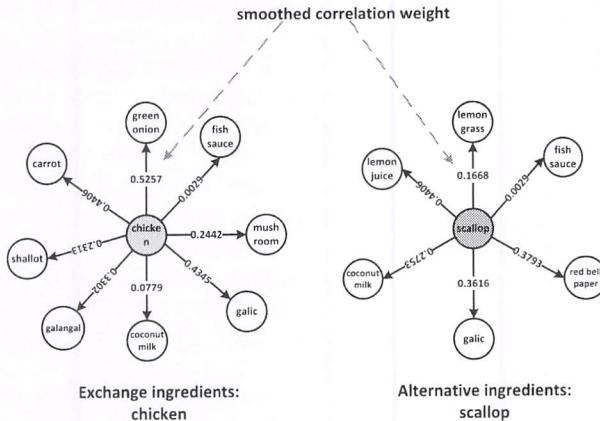


Fig. 2. Example of the directed edge-weighted graph.

C. Similarity calculation and Alternative ingredients recommendation

The problem that we address in this section is how to find the similarity of ingredients for the alternative recommendation. For a given category, a direct edge-weight graph of each ingredient in a given category is created. Each graph of candidate ingredient will be compared with the exchange ingredient graph. The cosine similarity between the two graphs will be used to find the similarity between the exchange ingredients and candidate alternative ingredients. The top 5 ingredients

with the highest similarity scores will be recommended to the user. The cosine similarity function is shown below:

$$iSim(ex, al) = \frac{\sum_i (SCW_{ex_i} \times SCW_{al_i})}{\sqrt{\sum_j SCW_{ex_j}^2} \times \sqrt{\sum_k SCW_{al_k}^2}} \quad (4)$$

where $iSim(ex, al)$ is a similarity value between ingredient ex and al while ex and al are directed edge-weighted graphs of exchange ingredient and alternative ingredient respectively.

IV. EXPERIMENTS AND EVALUATION

A. Dataset

The Yummly-28K recipe dataset collected from Yummly and provided by www.lherranz.org/datasets/ to develop our algorithms and evaluate the performance. We collected only Thai recipes which consist of 832 dishes and 868 ingredients.

B. Baseline

In order to evaluate our approach, we compare our approach performance with the co-occurrence frequency approach adopted from [2]. We calculated the occurrence frequency of an ingredient and the co-occurrence frequency of two ingredients. For solving an orthographical variant with a cooking ontology, we cannot perform this step because we do not have a cooking ontology. Then, the compatibility score between the ingredient and the recipe is calculated. The top 5 alternative ingredients with the highest scores of the proportion of alternative ingredients with compatibility score of all ingredients in a recipe database will be recommended.

C. Evaluation

In this section, we evaluate the performance of our approach. The experiments were conducted with four recipes. The four recipes of our evaluation are shown in Table II. The top 5 ingredients for a selected category are recommended. The example of the top 5 recommended ingredients is shown in Table III. For preliminary evaluation, we asked 7 participants who have Thai cooking experience from 6 countries (Thailand, Australia, Korea, Norway, Germany, and the other two from the USA) to evaluate whether the recommended ingredients were suitable as an alternative or not based on their experience on cooking. The participant will give a score (1-5) for each recommended ingredient. More point means the ingredient is more suitable for the replacement. The result of our evaluation is shown in Table IV. However, for the taste evaluation, we will conduct it in our future work.

TABLE II
THE FOUR RECIPES OF OUR EVALUATION.

Menu Name	Exchange ingredient	Alternative Category
Tom Kha Gai	chicken	meat, seafood
Thai Green Curry	coconut milk	milk, nuts
Thai Basil Beef	beef	meat, seafood
Thai Papaya Salad	green papaya	meat, seafood, vegetable, fruit

In Table IV, our approach achieves a higher average score over the baseline. The results show that most participants

TABLE III
 THE EXAMPLE OF TOP 5 RECOMMENDED INGREDIENTS TO REPLACE “GREEN PAPAYA” FOR THAI PAPAYA SALAD.

	Vegetable	Fruit	Meat	Seafood
Baseline	ginger (9) lemongrass (11) red bell pepper (11) green onion (10) shallot (11)	mango (29) pineapple (17) coconut (11) coconut flakes (8) avocado (15)	chicken breast (18) chicken (16) chicken thighs (16) sirloin steak (18) boneless chicken thighs (17)	shrimp (20) red snapper (13) salmon fillet (19) prawns (18) whitefish fillets (13)
Our approach	green long beans (31) salad (24) green cabbage (26) shallot (11) cucumber (33)	mango (28) avocado (15) coconut (11) pomegranate seeds (10) pineapple (17)	chicken thighs (17) pork (17) ground pork (16) sirloin steak (18) boneless pork loin roast (15)	shrimp (19) salmon fillet (18) whitefish fillets (13) halibut fillets (13) prawns (18)

(x) is a total score from 7 participants given for each recommended ingredient.

TABLE IV
 THE AVERAGE SUITABLE SCORE (1 - 5) OF OUR EVALUATION.

Participant	Country	Baseline	Our Approach
1	Thailand	2.52	2.84
2	Australia	3.30	3.56
3	Korea	3.08	3.40
4	Norway	2.66	2.70
5	USA	2.78	2.98
6	USA	2.46	2.20
7	Germany	2.46	2.64
	Average	2.75	2.90

prefer our recommended results except one participant from the USA. In addition, participants from Australia and Korea gave average scores greater than 3.00 while participants from the USA and Germany gave average scores less than 2.50. This may be due to the variety of ingredients in each country and individual preferences.

V. CONCLUSIONS

In this paper, an alternative-ingredient recommendation system for Thai recipes is proposed. The goal of this study is to effectively recommend alternative ingredients to replace a specific ingredient in a recipe. Our contributions are summarized as follows: (1) we introduced a recommendation approach of alternative ingredients for Thai recipes and (2) the incorporation between smoothed correlation weight and graph-based approach achieved better results than the baseline. In future work, we will further consider the quantity of each ingredient in the recipe. Cooking demonstration and taste evaluation will be conducted.

ACKNOWLEDGMENT

This research was supported by The Coordinating Center for Thai Government Science and Technology Scholarship Students (CSTS), National Science and Technology Development Agency (NSTDA).

REFERENCES

[1] K.-H. Liu, H.-C. Chen, K.-T. Lai, Y.-Y. Wu, and C.-P. Wei, “Alternative ingredient recommendation: A co-occurrence and ingredient category importance based approach,” in *PACIS*, 2018, p. 298.

[2] N. Shino, R. Yamanishi, and J. Fukumoto, “Recommendation system for alternative-ingredients based on co-occurrence relation on recipe database and the ingredient category,” in *2016 5th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI)*. IEEE, 2016, pp. 173–178.

[3] D. Elsweiler, C. Trattner, and M. Harvey, “Exploiting food choice biases for healthier recipe recommendation,” in *Proceedings of the 40th international acm sigir conference on research and development in information retrieval*, 2017, pp. 575–584.

[4] S. Sajadmanesh, S. Jafarzadeh, S. A. Ossia, H. R. Rabiee, H. Haddadi, Y. Mejova, M. Musolesi, E. D. Cristofaro, and G. Stringhini, “Kissing cuisines: Exploring worldwide culinary habits on the web,” in *Proceedings of the 26th international conference on world wide web companion*, 2017, pp. 1013–1021.

[5] R. Yamanishi, N. Shino, Y. Nishihara, J. Fukumoto, and A. Kaizaki, “Alternative-ingredient recommendation based on co-occurrence relation on recipe database,” *Procedia Computer Science*, vol. 60, pp. 986–993, 2015.

[6] Y.-Y. Ahn, S. E. Ahnert, J. P. Bagrow, and A.-L. Barabási, “Flavor network and the principles of food pairing,” *Scientific reports*, vol. 1, p. 196, 2011.

[7] K. R. Varshney, L. R. Varshney, J. Wang, and D. Myers, “Flavor pairing in medieval european cuisine: a study in cooking with dirty data,” *arXiv preprint arXiv:1307.7982*, 2013.

[8] X. Mao, S. Yuan, W. Xu, and D. Wei, “Recipe recommendation considering the flavor of regional cuisines,” in *2016 International Conference on Progress in Informatics and Computing (PIC)*. IEEE, 2016, pp. 32–36.

[9] L.-R. GUO, S.-Z. YUAN, X.-H. MAO, and Y.-N. GU, “A recipe recommendation system based on regional flavor similarity,” *DEStech Transactions on Computer Science and Engineering*, no. cimns, 2017.

[10] S. Maheshwari and M. Chourey, “Recipe recommendation system using machine learning models,” 2019.

[11] N. Shino, R. Yamanishi, and J. Fukumoto, ““co-occurrence relation” and “ingredient category” recommend alternative-ingredients,” in *New Trends in E-service and Smart Computing*. Springer, 2018, pp. 1–18.